
AutoBayes
Program Synthesis System
—Users Manual—

Johann Schumann
Hamed Jafari
Tom Pressburger
Ewen Denney
Wray Buntine
Bernd Fischer

NASA Ames Research Center
August 2008

National Aeronautics and

Space Administration

Preface

Program synthesis is the systematic, automatic construction of efficient executable
code from high-level declarative specifications. AutoBayes is a fully automatic pro-
gram synthesis system for the statistical data analysis domain; in particular, it solves
parameter estimation problems. It has seen many successful applications at NASA
and is currently being used, for example, to analyze simulation results for Orion. The
input to AutoBayes is a concise description of a data analysis problem composed
of 1) a parameterized statistical model and 2) a goal that is a probability term in-
volving parameters and input data. The output of AutoBayes is optimized and
fully-documented C/C++ code that, given input data, computes values for those pa-
rameters that maximize the probability term. Parameter estimation, clustering, and
change point detection type statistical analysis problems can be described in this fash-
ion. The output code can be linked dynamically into MatlabTM 1, Octave, and
other environments. AutoBayes uses Bayesian Networks internally to decompose
complex statistical models and to derive algorithms for their solution. Its powerful
symbolic system enables AutoBayes to solve many subproblems symbolically rather
than having to rely on numeric approximation algorithms, thus yielding effective, ef-
ficient, and compact code. AutoBayes makes statistical analysis faster and more
reliable, because effort can be focused on model development and validation rather
than manual development of solution algorithms and code, which instead AutoBayes
handles automatically.

1MatlabTM is a trademark of Mathworks, Inc.

Contents

1 Introduction 15

1.1 Key Features . 15

1.2 Applications of AutoBayes . 17

1.2.1 Data Analysis on Large Software Simulations 17

1.2.2 Data Analysis for Air Traffic Control Data 18

1.2.3 Shape Analysis of Planetary Nebulae 19

1.2.4 Clustering for Sloan Digital Galaxy Survey 22

1.2.5 Hyperspectral Clustering of Earth Science Data 22

1.2.6 Clustering and Mapping of Geospatial Data 23

1.2.7 Detection of Gamma-ray Spikes 24

2 Installation 27

2.1 Hardware Requirements . 27

2.2 Installation Requirements . 27

2.2.1 C Preprocessor . 27

2.2.2 Installing SWI-Prolog . 27

2.2.3 GraphViz . 28

2.2.4 MatlabTM or Octave . 28

2.3 Getting AutoBayes . 28

2.3.1 Source TAR File . 28

2.3.2 AutoBayes CVS Repository 28

2.4 Building and Setting Up AutoBayes 29

4 CONTENTS

3 Iris Classical Example 31

3.1 Constructing an AutoBayes Model for Iris Flower Set 31

3.2 Invoking AutoBayes on the Iris Input Model 33

3.2.1 Generating Code for Octave 34

3.2.2 Generating Code for MatlabTM 34

3.2.3 Flags . 34

3.3 Compiling and Running the Iris Generated Program 34

3.3.1 Compile and Run — Octave 35

3.3.2 Compile and Run — MatlabTM 35

3.4 Providing Input to the Iris Program and Analyzing Results 35

3.4.1 Executing Commands and Reading Outputs 38

3.4.2 Interpretation of Results . 39

3.4.3 MatlabTM Scripts for Iris Plots 44

4 System Functionality 47

4.1 Overview . 47

4.2 Generating Code . 48

4.3 Generating Documentation . 49

4.4 Generating Artificial Test Data . 49

5 Generated Algorithms 51

5.1 Clustering Algorithms . 51

5.1.1 k-Means Algorithm . 51

5.1.2 The EM Algorithm . 52

5.2 Numerical Optimization Algorithms . 52

5.2.1 Nelder-Mead Downhill Simplex Method 52

5.2.2 Golden-Section Search Method 53

CONTENTS 5

5.2.3 Initialization . 53

5.3 Generic Optimization . 54

6 Using AutoBayes 55

6.1 Invoking AutoBayes on an Input File 55

6.1.1 Generated File Names . 55

6.2 Command-Line Flags . 56

6.2.1 Help Flag . 57

6.2.2 Design Document Flag . 57

6.2.3 Target Flag . 58

6.2.4 Artificial Data Flag . 58

6.3 Pragmas . 59

6.4 Compiling and Running the Generated Code 59

6.4.1 Compiling and Running the Generated Program: Octave . . . 59

6.4.2 Compiling and Running the Generated Program: MatlabTM . 60

6.5 AutoBayes Error and Warning Messages 61

6.5.1 Interface (command-line) Errors 61

6.5.2 Syntax Errors . 61

6.5.3 Code-Generation Errors . 62

6.6 Debugging AutoBayes Specifications 62

6.6.1 Running AutoBayes . 62

6.6.2 Running AutoBayes-generated Code 62

7 Specification Language 65

7.1 Model Declarations and Syntax . 65

6 CONTENTS

8 Statistical Models — Examples 71

8.1 Introductory Examples . 72

8.1.1 Normal Distributed Data . 72

8.1.2 Working with Priors . 75

8.1.3 Combining Measurements . 78

8.1.4 Transformations: log-normal and square-normal 81

8.1.5 Other distributions: Cauchy . 81

8.1.6 Discrete . 82

8.2 Clustering Examples . 84

8.2.1 Mixture of Gaussians . 84

8.2.2 Multivariate Mixture of Gaussians 92

8.2.3 Working with Priors . 94

8.2.4 Working with Non-Gaussian and Multiple Distributions 99

8.2.5 Multinomial Principal Components Analysis (MPCA) 103

8.3 Time Series Analysis . 105

8.3.1 Random Walk . 105

8.3.2 Change Point Detection . 106

8.3.3 Change Points in Multiple Variables 108

8.3.4 Kalman Filters . 111

8.3.5 Kalman Filters with Failure modes 112

8.4 Reliability Models . 115

A Command Line Options 119

A.1 AutoBayes Command Line Flags . 119

A.2 AutoBayes Pragmas . 122

B Acknowledgements and Biographies 133

Sue Blumenberg
Text Box

CONTENTS 7

Index 139

8 CONTENTS

List of Figures

1.1 AutoBayes system architecture . 16

1.2 HTV simulation results . 18

1.3 CAS-mach transition . 19

1.4 AutoBayes analysis of CAS-mach transition 20

1.5 Transition likelihood . 20

1.6 Planetary nebula IC 418 and analyses 21

1.7 Clustering analysis of IC 418 . 21

1.8 Analysis of galaxy clusters . 22

1.9 Clustering of MODIS data . 23

1.10 Clustering of Census data . 24

3.1 Convergence of EM . 40

3.2 Scatter-plot for iris data . 41

3.3 Colored Scatter-plot for Iris data . 42

3.4 Scatter-plot with parameters . 43

4.1 Principle Architecture of AutoBayes 47

4.2 Generated Sample data for Iris . 50

8.1 Bayesian Network for Mixture of Gaussians 85

10 LIST OF FIGURES

List of Tables

5.1 Control of initialization . 54

7.1 List of Probability Distributions . 68

8.1 Distributions for mixture models . 100

8.2 AutoBayes specifications and size of generated code 118

12 LIST OF TABLES

Listings

3.1 AutoBayes model for Fisher’s Iris data set. 32

3.2 MatlabTM script used for generating Iris scatter plots 44

3.3 MatlabTM script for scatter-plot with estimated parameters 45

8.1 AutoBayes specification for normal distributed data. 72

8.2 Specification for normal distributed data with priors. 75

8.3 Specification for normal distributed data with conjugate priors 75

8.4 AutoBayes specification for two biased measurements 79

8.5 AutoBayes specification for log-normal distributed data. 81

8.6 Lighthouse example . 82

8.7 AutoBayes model for tossing a biased coin. 82

8.8 AutoBayes model for repeatedly tossing a biased coin. 83

8.9 AutoBayes model for tossing a biased coin with prior. 83

8.10 AutoBayes model for a mixture of Gaussians. 84

8.11 Multivariate clustering of Gaussians . 93

8.12 Mixture of Gaussians with priors. 98

8.13 Expressions to support vonMises-Fisher distributions. 99

8.14 Mixture of Betas (Class 0) and Gaussians (Class 1). 102

8.15 AutoBayes model for MCPA . 103

8.16 AutoBayes model for a biased random walk. 106

8.17 AutoBayes model for a simple detection of a change point 107

8.18 AutoBayes specification for the detection of the CAS-mach transition 108

8.19 Specification for the detection of the CAS-mach transition with priors . 109

14 LISTINGS

8.20 AutoBayes model for a simple Kalman filter. 111

8.21 AutoBayes model for a Kalman filter with sensor failures. 112

8.22 Jelinski-Moranda software reliability model 115

8.23 Jelinski-Moranda model with conjugate priors 116

8.24 Goel-Okumoto model . 117

1. Introduction

Data analysis is the transformation of raw data (i.e., pure numbers) into a more
abstract form, e.g., summarizing a set of measurements by their mean value and
standard deviation as a bare minimum. For most data analysis tasks—especially tasks
involving large data sets—computer support is necessary. AutoBayes is a program
generator that generates statistical-method based scientific data analysis programs.

The input to AutoBayes is a problem specification as you can see in Figure 1.1.
This problem specification is a concise description of a data analysis problem; in
fact, a parameter estimation problem. The specification is in the form of a statistical
model with declarations, constraints, and a maximum-likelihood (ML) or maximum a
posteriori (MAP) goal. AutoBayes internally uses Bayesian Networks to decompose
complex statistical models and to derive algorithms for the solution. AutoBayes’s
output is optimized and fully documented C/C++ code which can then be linked
dynamically into MatlabTM, Octave, or other environments. Input data is then
given to the generated program to obtain analysis results in the form of estimated
parameters.

1.1 Key Features

AutoBayes offers several unique features which result from using program synthesis
technology and which make it more powerful and more versatile for statistical analysis
than other tools and statistical libraries.

• AutoBayes generates efficient procedural code from a high-level, declarative
specification; the specification does not involve algorithmic information such as
data or control flow.

• Changes to the statistical model can be made without time consuming re-
implementation of a data analysis program.

• The automatically-generated code that solves the statistical problem is efficient
and accurate, because it does not rely on numeric approximations when it can
solve problems symbolically.

• AutoBayes can generate different programs for the same application, each
embodying differing solution algorithms or algorithm variants.

16 Introduction

Figure 1.1: AutoBayes system architecture

• With AutoBayes’s test data generator, the user is able to generate synthetic
data according to the given model specification. This feature can be used to
debug and validate the statistical model and to select a synthesized program
which best fits the given application profile.

The rest of this chapter discusses some applications that AutoBayes has been used
for, giving a sense of its capabilities and breadth of applications. Chapter 2 describes
how to install AutoBayes. Chapter 3 shows the step-by-step application of Auto-
Bayes to solve the classic problem of clustering Fisher data about Iris flowers. This
chapter explains the clustering problem specification, the commands to invoke Auto-
Bayes and link it to MatlabTM, and the results of the analysis. Chapter 4 briefly
describes how AutoBayes works internally; the following chapter describes the kinds

1.2 Applications of AutoBayes 17

of algorithms (e.g., clustering and maximization algorithms) that AutoBayes can
embed in its generated code. Chapter 6 describes AutoBayes commands, files, and
flags. Chapter 7 defines the problem specification language. We have found that
a specification for a new problem is most easily constructed by basing it on existing
specifications, so chapter 8 discusses many problems and their specifications, as well as
descriptions of the derivation of algorithms constructed by AutoBayes to solve those
problems. Appendix A describes command line options accepted by AutoBayes that
affect its behavior. Appendix B acknowledges the creators of AutoBayes and NASA
support. Lastly, there is a bibliography and an index of terms.

1.2 Applications of AutoBayes

The AutoBayes system has been successfully applied to a wide field of different
projects and tasks within NASA. In this section, we will briefly highlight some of the
applications in order to give a glimpse of the system’s capabilities and applicabilities.

1.2.1 Data Analysis on Large Software Simulations

The analysis of large and complex parameterized software systems, e.g., understand-
ing the results of simulations of aerospace systems, is very complicated and time-
consuming due to the large parameter space and the complex, highly-coupled non-
linear nature of the different system components. At NASA Ames, tools were devel-
oped to facilitate the systematic exploration of parameter spaces. The tools use a
unique combination of Monte Carlo, n-factor combinatorial parameter variations, and
model-based generation of simulation and test cases [GBSMB08]. These cases (of-
ten up to 10,000 of them) are executed by the Trick simulation environment [Vet07],
usually generating huge amounts of data.

In order to study the structure of these multivariate data and the dependency on the
parameters, AutoBayes clustering models are being used to group these large data
sets. A synergistic combination with the machine learning tool TAR3 then facilitates
comprehensive root cause analysis. This tool is being used for abort and re-entry
scenario analysis for Orion, as well as for a small-satellite guidance, navigation, and
control system. Figure 1.2 shows results of a computational model of an earth-based
small-satellite simulator entitled the “Hover Test Vehicle” (HTV). The first figure
shows the expected variation in trajectory relative to various input parameters (such
as center of gravity, mass of fuel, etc.). The clusters were ranked according to their
landing velocity and position, with colors ranging from Blue (best outcomes) to Red
(worst outcomes) The second plot shows the relationship between landing velocity and
the initial wet mass of the vehicle. Through the use of this data, the flight rules for

18 Introduction

a successful flight were defined. The flight test of the vehicle performed as suggested
by the data.

Figure 1.2: HTV trajectories colored according to their class (left). Relationship
between landing velocity and wet mass (right).

1.2.2 Data Analysis for Air Traffic Control Data

Modern air traffic control (ATC) systems have to deal with a densely crowded airspace.
In order to avoid conflicts and mid-air collisions, air traffic control systems, such as
the CTAS (Center Tracon Advisory System), which has been developed at NASA
Ames, include algorithms to predict the aircraft’s trajectories for several minutes into
the future. Of course, the models underlying these algorithms must be as accurate as
possible, despite many unknowns and high noise.

AutoBayes was used for a study to perform data mining on actual aircraft trajec-
tories (data from ATC and radar). One task was to find the transition point between
a constant CAS (calibrated airspeed) and a constant mach climb, which occurs in
typical trajectories. Figure 1.3 illustrates such a scenario. The altitude of the aircraft
over time is shown as well as the development of CAS and mach speed. Given the
CAS and mach speed over time the task is to find the most likely transition point
(vertical line). A simple AutoBayes specification solves this task (for details, see
Section 8.3.3). We assume linear, but noisy behavior of the speeds. Thus, the CAS
trajectory can be defined by

cast =

{

cas0 for t ≤ t0
cas0 − casr(t − t0) for t > t0

with unknown parameters cas0, casr, and the transition point t0. The same can be set
up for the mach number. If we assume that the actual data are noisy and Gaussian

1.2 Applications of AutoBayes 19

distributed, it is easy to write a statistical specification to estimate the unknown
parameters. Figure 1.4 shows the actual result of the AutoBayes analysis. The code
generated by AutoBayes has reliably estimated the unknown parameters and the
transition point (blue and green). For this analysis, large data sets consisting of more
than 10,000 climb scenarios have been analyzed, resulting in figures like Figure 1.5
which shows the most likely mach numbers and altitudes of the transition for a specific
type of jet aircraft.

cas−mach transition altitude

time

altitude
mach

cas cas−mach transition

Figure 1.3: Aircraft climb trajectory with altitude profile (solid), CAS (dashed), and
mach profile (dash-dot)

1.2.3 Shape Analysis of Planetary Nebulae

Planetary nebulae are remnants of dying stars. Scientists try to understand the
physics of these nebulae by analyzing data, in particular by analyzing images taken
by the Hubble Space Telescope (HST). Figure 1.6a shows the image of planetary neb-
ula IC418 (the “Spirograph” Nebula). Although coming in most different shapes and
forms, different regions of the nebula can be distinguished easily: the dwarf star in the
center, the core, and the outer hull. Automatic analysis of pictures requires statistical
data analysis models that estimate the center and elliptical extent and orientation

20 Introduction

0 5 10 15 20 25 30 35
0.7

0.75

0.8

0.85

0.9

m
ac

h

climb scenario no 62

0 5 10 15 20 25 30 35
280

300

320

340

ia
s

[k
no

ts
]

0 5 10 15 20 25 30 35
2

2.5

3

3.5
x 10

4

al
tit

ud
e

[ft
]

0 5 10 15 20 25 30 35 40 45

0.65

0.7

0.75

0.8

m
ac

h

climb scenario no 49

0 5 10 15 20 25 30 35 40 45
240

260

280

300

ia
s

[k
no

ts
]

0 5 10 15 20 25 30 35 40 45
2

2.5

3

3.5
x 10

4

al
tit

ud
e

[ft
]

0 10 20 30 40 50 60

0.65

0.7

0.75

0.8

m
ac

h

climb scenario no 63

0 10 20 30 40 50 60
260

280

300

320

ia
s

[k
no

ts
]

0 10 20 30 40 50 60
2

2.5

3

3.5
x 10

4

al
tit

ud
e

[ft
]

Figure 1.4: Results of analysis with AutoBayes for three climb scenarios. The actual
trajectory is shown in red, blue lines correspond to the parameters as estimated by
AutoBayes code

Figure 1.5: Likelihood of transition point in an altitude over mach coordinate system
(left) and in a CAS over mach coordinate system (right). Two major transition points
at altitudes of approximately 26,000ft and 31,000ft are detected.

of the nebula. In close collaboration with scientists at NASA Ames, several Auto-
Bayes models were defined to estimate center and extent of a nebula. Figure 1.6b
shows the manually masked image, which has been taken as the basis for the analysis.
Following the approach in [KH02] of using a hierarchy of statistical models to estimate
the nebula’s parameters, a first model uses a 2-dimensional spherical Gaussian model
to estimate center (x0, y0), intensity i0, and radius r of the nebula, where intensity F
is modeled as

F (x, y) = i0 · e−
(x0−x)2+(y0−y)2

2r2 (1.1)

In the statistical model, the data (pixel intensity) d(x, y) is distributed as d(x, y) ∼
F (x, y) + η with white noise η.

1.2 Applications of AutoBayes 21

Figure 1.6c shows the original image superimposed with the estimates of the param-
eters of the Gaussian model. Figure 1.6d shows sampled data generated using the
estimated Gaussian model parameters.

Figure 1.6: Planetary nebula IC 418 or Spirograph Nebula (a) Composite false-color
image taken by the HST (Sahai et al., NASA and The Hubble Heritage Team). The
different colors (resp. gray-scales) indicate the different chemicals prevalent in the
different regions of the nebula; the origin of the visible texture is still unknown. The
central white dwarf is discernible as a white dot in the center of the nebula. (b)
Manually masked original image. (c) Original image with estimated Gaussian model
parameters superimposed. (d) Sample data generated using estimated Gaussian model
parameters.

In a second set of models, image segmentation techniques were used. Here, image
segmentation via clustering was used. The AutoBayes model, developed for this
application is a two-dimensional mixture (of Gaussians) model. AutoBayes gen-
erates a customized EM algorithm. Figure 1.7 shows results using clustering-based
image segmentation techniques. Models without and with geometric refinement, i.e.,
constraints about the shape are shown. Note that these AutoBayes models are
insensitive enough against several image artifacts (e.g., the “spokes”).

Results of this studies were published in [FHKS03, FS03a, KH02].

Figure 1.7: Segmentations of IC418 image: (a) three-class segmentation (b) ditto,
white class used as mask load to original image (c) five-class segmentation, and (d)
sample data from geometrically refined segmentation model; class 1 (white) corre-
sponds to the hull, class 2 (gray) to the core, and class 3 (not shown) to the back-
ground.

22 Introduction

1.2.4 Clustering for Sloan Digital Galaxy Survey

For understanding the large scale structure of the universe, mapping of structures of
all scales (galaxies to large walls) is important. The Sloan Digital Sky Survey (SDSS)
contains photometric images including accurate redshifts. The classification of galaxy
distances based on redshift using advanced Bayesian data analysis techniques has
been explored at NASA Ames. [SSF05] describes an ensemble approach to building
Mercer Kernels with prior information. These data adaptive kernels can encode prior
information and have been learned directly. For this research work, AutoBayes
was used to estimate the parameters for the kernels. A very compact AutoBayes
specification (a mixture model with priors) produces an efficient customized variant
of the EM algorithm. [SSF05] describes the approach; the mathematical derivation in
this paper has been automatically generated and typeset by AutoBayes. Figure 1.8
(left) shows the clustering of a small section of the sky using spectroscopically de-
termined redshifts. Dots indicate galaxies on filaments, crosses indicate field-galaxies
(not in filaments). The log-likelihood of the AutoBayes Gaussian mixture model
(without priors here) is shown in Figure 1.8 (right) as a function of number of com-
ponents in the model. This diagram shows that there is substantial variation due to
the well-known sensitivity of the EM algorithm to its (random) initialization.

0 100 200 300 400 500 600 700 800 900
−200

−100

0

100

200

300

400

500

600
Distance Cutoff = 1.25 # Background Galaxies= 164

Right Ascension

D
ec

lin
at

io
n

-340000

-320000

-300000

-280000

-260000

-240000

-220000

-200000

0 5 10 15 20 25

-lo
gl

ik
el

ih
oo

d

number of classes

Figure 1.8: Clusters of galaxies (left) and log-likelihood of the AutoBayes model as
a function of model components (number of classes, right).

1.2.5 Hyperspectral Clustering of Earth Science Data

Earth-observing satellites like MODIS have a hyperspectral camera. This means that
a certain image is taken with a multitude of different wavelengths in the infrared
spectrum. The resulting data block is called a hyperspectral data cube (Figure 1.9,
left). Since different ground cover (e.g., trees, grass, buildings, water) and different

1.2 Applications of AutoBayes 23

minerals (granite, sand, limestone) reflect the light with a different intensity for dif-
ferent wavelength, scientists can use these data to analyze ground coverage, detect
wild fires, or find dying trees.

A simple multivariate mixture model developed with AutoBayes can easily cluster
such a hyperspectral cube. The resulting most probable class assignment for each
pixel has been used to color the image according to the estimated groups (Figure 1.9,
right). The various different ground covers (grass, water, marshland, etc) can be
seen easily. In this case, AutoBayes was asked to produce 5 different classes. This
clustering gives an easy to interpret result (Figure 1.9(right)). With a larger number
of classes more subtle variations are uncovered.

Figure 1.9: Hyperspectral image cube (MODIS) (left) and clustering result for hyper-
spectral data and 5 classes as produced by AutoBayes (right).

1.2.6 Clustering and Mapping of Geospatial Data

Census data are in general multivariate data. For each household, different variables,
like size of household, income, renting or owning are assembled. These data are related
to the ZIP code. With a simple AutoBayes multivariate clustering model, such data

24 Introduction

can be processed and visualized as shown in Figure 1.10. AutoBayes can be easily
interfaced into visualization tools such as NASA’s World Wind1 or Google Earth.
Figure 1.10 shows the results of a multivariate clustering of US census data along the
dimensions household size, rented/owned living quarters, age, and male-female ratio
for kids and adults. In the given coding, a total of 11 variables were used. These data
were available with the ZIP code as their index. Figure 1.10 reveals pretty distinct
classes for the region around Anchorage, the North-Western part, and the Aleutes
and can form the basis for further analyses and interpretation.

Figure 1.10: Multivariate clustering of census data and mapping onto geographical
centers of ZIP codes in parts of Alaska.

1.2.7 Detection of Gamma-ray Spikes

Gamma-ray bursts are very powerful electromagnetic flashes of gamma rays. It is
thought that these bursts have to do with the collapse of a high-mass star into a black
hole. Instruments in orbit, e.g., the BATSE (Burst and Transient Source Explorer)
on the Compton Gamma Ray Observatory (launched 1991) continuously measure

1http://worldwind.arc.nasa.gov

http://worldwind.arc.nasa.gov

1.2 Applications of AutoBayes 25

the intensity of gamma rays. A simple AutoBayes model can be used to detect
and isolate such burst events. We assume that the inter-arrival time of photons is
exponentially distributed. A detector for a switchpoint, i.e., the transient between
a (low) arrival rate and a higher arrival rate can be specified in the AutoBayes
specification language in a few lines. The generated program successfully isolates
recognized bursts.

26 Introduction

2. Installation

AutoBayes runs under Linux and is implemented in SWI-Prolog. The prerequisites
for AutoBayes are as follows:

• CPP (C Preprocessor)

• SWI Prolog

• DOT Language (For graphical representation of Bayesian Networks)

• MatlabTM or Octave

2.1 Hardware Requirements

• Solaris

• Mac OSX

• Linux

• Windows with cygwin

2.2 Installation Requirements

2.2.1 C Preprocessor

CPP is the preprocessor for the C programming language and is a requirement for
AutoBayes. It is included, e.g., with the GNU C-compiler and is by default available
for most platforms.

2.2.2 Installing SWI-Prolog

The stable version (Version 5.6.x or higher) of SWI-Prolog can be downloaded from
http://www.swi-prolog.org/.

http://www.swi-prolog.org/

28 Installation

2.2.3 GraphViz

The GraphViz tool is used for generating layouts of the graphical representations of
Bayesian Networks. Please refer to the Graphviz website http://www.graphviz.org/,
and click on the Download tab and follow the instructions in order to have this package
installed on your system. Only the tool dot is used with the AutoBayes system.

2.2.4 MatlabTM or Octave

MatlabTM or Octave is needed to compile and run the generated synthesized code.
MatlabTM is available at http://www.mathworks.com and Octave can be obtained
from http://www.octave.org. Octave is an open source program system for scien-
tific computation which is very similar to MatlabTM.

2.3 Getting AutoBayes

AutoBayes can be obtained through two methods: by the source tar-file, or by
checking out from a CVS repository. Currently, the CVS repository can only be
accessed from NASA Ames, Code TI machines.

2.3.1 Source TAR File

You can unpack the AutoBayes source tar-file autobayesX.Y.tgz, where X.Y is
the version number, in the Unix environment by using the following command:

% tar zxvf autobayesX.Y.tgz

or the gtar command:

% gtar zxvf autobayesX.Y.tgz

Note: Unpacking a tar-file will write its contents to the current directory.

In the sequel, the directory where AutoBayes was unpacked will be called
autobayeshome.

2.3.2 AutoBayes CVS Repository

You can use CVS to checkout copies of projects if you have permission for CVS user
access. CVS is a good method for keeping track of modification made to project
source files.

Obtain the AutoBayes tool through a CVS checkout from the top-level directory
using the command line:

http://www.graphviz.org/
http://www.mathworks.com
http://www.octave.org

2.4 Building and Setting Up AutoBayes 29

cvs -d :pserver:username@projectname.domain.net:/cvs co projectname/top-level-
directory

For example:
cvs -d wow.arc.nasa.gov:/home/user/cvs co PN

2.4 Building and Setting Up AutoBayes

After unpacking the AutoBayes tar-file or checking out the tool from the repository,
edit the file autobayeshome/Makefile so that it contains the correct path for Prolog.
The variable PL should be set either to pl or the exact path where SWI-Prolog has
been installed.

In addition, variables in the Makefile in the following directory
autobayeshome/system/SWI/ have to be set to the appropriate paths as follows.

The variable INCLUDEDIR must be set to the location of the file SWI-Prolog.h. For
example

INCLUDEDIR=/usr/local/pl-5.6.29/lib/pl-5.6.29/include

The variable PN LIB must be set to the location of the file libpl.a. For example

PN LIB=/usr/local/pl-5.6.29/lib/pl-5.6.29/lib/i686-linux/

We can now use the make command into the bash shell to compile and build Auto-
Bayes:

% cd autobayeshome

% make autobayes

This command starts the Prolog system, loads the source files, and produces an exe-
cutable file named autobayes in the autobayeshome directory.

You have to set the shell variable AUTOBAYESHOME to the autobayeshome directory;
e.g., in your .bashrc file:

export AUTOBAYESHOME=autobayeshome

Then move autobayes into a binary directory or adjust the PATH accordingly; e.g.,

export PATH=./:autobayeshome:${PATH}

30 Installation

3. Iris Classical Example

The Fisher Iris flower data set is a multivariate data set introduced by Aylmer Fisher
in 1936 as an example of discriminant analysis. The data set contains 50 samples from
each of three types of Iris flowers (Iris setosa, Iris Virginia, and Iris versicolor). Each
sample has four dimensions, petal length, petal width, sepal length, and sepal width.
Although the data set is labeled, for the purpose of this example, we just consider the
4-dimensional unlabeled data set and ask for a classification.

This dataset was used by Fisher in his initiation of the linear discriminant model to
classify the flower types based on the combination of the four dimensions.
In this chapter we will:

1. construct a model for the Iris example,

2. invoke AutoBayes on the model and generate program code,

3. compile and run the generated program,

4. provide the Iris data set as input and analyze the results.

3.1 Constructing an AutoBayes Model for Iris Flower Set

As we already know, the first step is to construct a statistical model using the Au-
toBayes specification language. This section will guide the user through the Auto-
Bayes model for this example. Chapter 8 provides a more complete and thorough
description of various AutoBayes input model examples. Chapter 7 discusses details
of the AutoBayes specification language.

In Fisher’s classical data set, there are 3 classes of 50 instances each. The 3 classes
represent the types of the Iris flower: Setosa, Versicolor and Virginica. In our example,
we want unsupervised clustering, that is, we will ignore the labels on the data set. We
furthermore assume that all measurements are Gaussian distributed, which means
that we have a mixture of Gaussians problem. In order to keep the specification
compact, we represent the 150 data sets with 4 features each as a matrix of size
4 × 150.

Please note that AutoBayes uses a 0-based indexing of all vectors and arrays. In
our example, the data matrix is indexed data (0..3, 0..149) .

32 Iris Classical Example

Listing 3.1 shows the specification. First, we declare the name of the model (Line 1)
and the various constants and parameters. Each of the statements ends with a period
“.”, and comments are attached to a statement with as, with strings delimited by a
single quote “’”. Line comments are preceded by a %. In order to be as flexible as
possible, all the dimensions are declared as symbolic constants. In the declaration,
we write const nat to obtain a natural number constant that can be zero or a positive
integer. We know that the number of classes (3) is positive and much smaller than the
number of data points (150). We therefore can provide this knowledge as additional
constraints. These guide the AutoBayes system to select the right algorithms and
they are checked when the generated code is called. If such a constraint is violated,
e.g., if we want to cluster 10 data points into 3 classes (which does not make any sense
from a statistical point of view), a run-time error is produced.

The unknown parameters of our model are

• the type frequency phi (φ) is a probability vector returning how often each class
occurs in the data set. As a probability vector, it adds up to one, i.e.,

2
∑

i=0

φi = 1

Line 11 reflects this constraint. Please note that in the AutoBayes specifica-
tion language the (scalar) assignment is denoted by a :=, whereas “=” is used
for equality comparison.

• mean values µij and standard deviations σij, declared as matrices, denoting the
parameters for the Gaussian for each feature i and each class j. Their data type
is double. Since we know σij > 0, we specify this as an additional constraint in
Line 15. The underscores mean “all values” in the sense of the “:” operator in
MatlabTM.

1 model i r i s as

2 ’Simple multivariate clustering model for classical Ir is flower
example ’ .

3

4 const nat n va r i a b l e s as ’Number of features ’ .
5 const nat n po in t s as ’Number of data points ’ .
6 const nat n c l a s s e s as ’Number of classes ’ .
7 where 0 < n c l a s s e s .
8 where n c l a s s e s ≪ n po in t s .
9

10 double phi (0 . . n c l a s s e s −1) as ’Class probability vector . ’ .
11 where sum(I := 0 . . n c l a s s e s −1, phi (I)) = 1 .
12

3.2 Invoking AutoBayes on the Iris Input Model 33

13 double mu(0 . . n va r i ab l e s −1, 0 . . n c l a s s e s −1) as ’Matrix of means ’ .
14 double sigma (0 . . n va r i ab l e s −1, 0 . . n c l a s s e s −1) as ’Matrix of std devs ’

.
15 where 0 < sigma (,) .
16

17 output nat c l a s s a s s i gnment (0 . . n po ints −1) as ’Class of each point ’ .
18 c l a s s a s s i gnment () ∼ discrete (vec to r (I := 0 . . n c l a s s e s −1, phi (I))) .
19

20 data double i r i s d a t a (0 . . n va r i ab l e s −1, 0 . . n po ints −1) .
21 i r i s d a t a (C, I) ∼ gauss (mu(C, c l a s s a s s i gnment (I)) , sigma (C,

c l a s s a s s i gnment (I))) .
22

23 max pr ({ i r i s d a t a } | { phi , mu, sigma }) for { phi , mu, sigma } .

Listing 3.1: AutoBayes model for Fisher’s Iris data set.

We specify a vector class assignment, which stores the most probable class for each
data point. This means that it is of length 150, and its values can be 0 (class I), 1
(class II), and 2 (class III). This class assignment is unknown and is to be estimated.
Since we want to have the estimated vector returned, this statement is marked with
the keyword output. Lines 20–21 declare the data iris data as a matrix, which is
Gaussian distributed. The distribution is along the features with separate standard
deviations for each class and feature.

Line 23 contains the goal statement, telling AutoBayes the kind of statistical prob-
lem that needs to be solved. In our case, we want to estimate the unknown parameters
of the mixture; i.e., we need to maximize the probability of the data given the param-
eters

max Pr(iris data|{φ, µ, σ})
for the unknown parameters. The specification is a direct transcript.

At the end, we save our model as iris.ab and use it in the following steps.

3.2 Invoking AutoBayes on the Iris Input Model

As we mentioned earlier, AutoBayes is a code generator for scientific data analysis
programs. We now have a statistical model for our scientific data set (Fisher’s data
set). The next step is to apply AutoBayes to the model we just constructed and to
generate program code to use for our final goal of data analysis. For our example, we
want to generate a data analysis function that can be invoked from either the Octave
environment 1 or MatlabTM, depending on your working environment preference.

1Octave is an open source program system for scientific computation, which is very similar to
MatlabTM. Octave can be downloaded from http://www.octave.org

http://www.octave.org

34 Iris Classical Example

3.2.1 Generating Code for Octave

To generate C++ code which can be directly called from Octave as a function, invoke
AutoBayes as follows:

% autobayes -instrument iris.ab

In our example, a file with the name iris.cc will be generated. The file name (in our
case iris) is the same as the model name in the AutoBayes specification (Line 1
in Listing 3.1). In the sequel, we will use this name as the default.

3.2.2 Generating Code for MatlabTM

Other target languages and platforms can be selected using the -target <option>
command line option. To generate code that can be called from MatlabTM, invoke
AutoBayes as follows:

% autobayes -instrument -target matlab iris.ab

This will generate the program in C. In our example, a file with the name iris.c

will be generated. The file name (in our case iris) is the same as the model name in
the AutoBayes specification (Line 1 in Listing 3.1). In the sequel, we will use this
name as the default.

3.2.3 Flags

The -instrument flag after the autobayes command is used to display and store the
convergence error at each iteration cycle of the clustering algorithm that it employs
in the generated code.

Additional command line options can cause the AutoBayes system to produce dif-
ferent variants of the data analysis algorithms, varying the kind of algorithm (e.g.,
EM, k-means), initialization, or termination conditions. Details about command line
options are described in Appendix A.

3.3 Compiling and Running the Iris Generated Program

Now that we have a generated C++ or C program, we want to dynamically link it into
the Octave or MatlabTM environment. This section will go through the steps to
compile the generated program and create an oct-file for the Octave environment or
mex-file (using the file created with -target matlab) for the MatlabTM environment.

3.4 Providing Input to the Iris Program and Analyzing Results 35

3.3.1 Compiling and Running the Generated Program for the Octave
Environment

For us to be able to run the program, we will need to first compile the file
iris.cc and generate a binary file with the extension .oct. We will use the mkoctfile
command to generate this file:

> mkoctfile -I$AUTOBAYESHOME/system/octave/include iris.cc

This command will generate the file iris.oct. We then enter the Octave environ-
ment by typing octave into the command line. Once we enter Octave we can call
the program we just generated using previous command by typing its name and the
appropriate arguments as described in Section 3.4.

3.3.2 Compiling and Running the Generated Program for the MatlabTM

Environment

For working in the MatlabTM environment, we use the iris.c file that we generated
using the -target matlab flag along with the mex command. We type into the
MatlabTM or shell command line:

>> mex -I$AUTOBAYESHOME/system/matlab/include iris.c

This command will generate a dynamically linked binary file iris.x where x de-
pends on the operating system (e.g., mexmaci: Mac OSX, mexglx: Linux, mexw32:
Windows 32-bit). We now simply call the model by typing its name iris into the
MatlabTM command line and it will show the proper usages for the model.

3.4 Providing Input to the Iris Program and Analyzing Results

In order to run the generated program, we enter the Octave or MatlabTM environ-
ment. In the following, we will use Octave, but MatlabTM works the same. We
enter the Octave environment by typing octave to the command line prompt.

The next step is to call the model from the Octave environment; in our case, we
labeled our model iris. If we simply type the model name to the Octave command-
line, the model usage is returned2:

octave:1> iris

usage: [vector class_assignment,matrix mu,vector phi,

matrix sigma, vector errors] =

2We reformatted the output to fit within the margins of this page.

36 Iris Classical Example

iris(matrix iris_data,int n_classes,

double tolerance,int maxiteration)

In order to cluster the data, we now load the input file that contains the entire data
set of 150 samples for the Iris flower. In our case, we have named the file iris data.m.
This script sets the variables Class, Petal length, Petal width, Sepal length, and
Sepal width. The script can be loaded simply by typing its name to the Octave
command prompt:

octave:4> iris data

One way to make sure your model is linked to your dataset is to use the who command
after calling the input script. The who command will show you the dynamically-linked
functions and also the local user variables for the Iris model, for example:

*** dynamically linked functions:

iris

*** local user variables:

Class Petal_length Petal_width Sepal_length Sepal_width

octave:6>

The variable Class contains the labels, as strings. This variable is not used for our
example as we will do unsupervised clustering. The other variables (Petal length,
Petal width, Sepal length, and Sepal width) are vectors of size 1 × 150 which
contain the measurements.

You can use the whos command which returns the dynamically linked function and
also the local user variables along with row and column information for each variable:

octave:6> whos

*** dynamically linked functions:

prot type rows cols name

==== ==== ==== ==== ====

r-- dynamically-linked function - - iris_classical_example

*** local user variables:

3.4 Providing Input to the Iris Program and Analyzing Results 37

prot type rows cols name

==== ==== ==== ==== ====

rwd string 1 2000 Class

rwd matrix 1 150 Petal_length

rwd matrix 1 150 Petal_width

rwd matrix 1 150 Sepal_length

rwd matrix 1 150 Sepal_width

octave:7>

Now we need to define a matrix containing all the measured data. As defined in the
AutoBayes model, this matrix is of size 4 × 150 (n features × n points). We will
call this matrix data and set its values as below:

octave:7> data = [Petal_length; Petal_width; Sepal_length; Sepal_width];

The next step is to invoke the iris program with input and output parameters:

[c, mu, phi, sigma, errors]=iris(data,3,0.00001,30);

where:

c class assignment vector
mu mean
phi class frequency (class probability)
sigma standard deviation
errors vector to store errors
3 number of classes
data matrix containing Iris data
0.00001 convergence error for termination
30 maximum number of iterations

When this command is called, you should receive an output similar to the following:

octave:10> [c,mu,phi,sigma,errors] = iris(data, 3, 0.00001, 30);

pvar(89) = 3.25039

pvar(89) = 1.36758

pvar(89) = 0.445656

pvar(89) = 0.733875

.

.

38 Iris Classical Example

.

pvar(89) = 0.00627092

pvar(89) = 0.00575855

pvar(89) = 0.00528546

pvar(89) = 0.00484893

Please note that since the initialization process is random, each time you get different
results.

For each iteration of the expectation-maximization (EM) algorithm (Section 5.1.2),
the current error is displayed (Section 8.2.2). This error should become smaller as
the algorithm proceeds, but “jumps” are possible. If the error becomes smaller than
the given “tolerance” (10−5 in our example) or if the number of iterations exceeds
“max iterations” (30 in our example), the algorithm terminates and sets the result
variables. Figure 3.1 shows the development of the error; this is just a semilog plot of
the variable “errors”. This plot can easily be generated by typing semilogy(errors).

3.4.1 Executing Commands and Reading Outputs

Now that you have executed the model and generated results, it is time to view them.
As specified in the AutoBayes model, the algorithm estimates the parameters of
the Gaussians µ, σ2 for each class as well as the class frequency of φ. Also the most
likely class assignment c is returned as it has been declared as an output variable. c

is a vector of size 150 with entries 0, 1, 2 which correspond to the class assignment
(classes I, II, and III, respectively) for each measurement. We will use the variable c

to visualize the clustering.

Type mu into the command line to view the means for all three classes and their
features. For example you should get similar outputs to below where columns are
classes I through III, and the rows are features 1 through 4 (petal length, petal width,
sepal length, sepal width):

octave:15> mu

mu =

5.49353 1.46400 4.23318

1.99709 0.24400 1.30830

6.62647 5.00600 5.84463

3.01786 3.41800 2.70497

octave:16>

3.4 Providing Input to the Iris Program and Analyzing Results 39

You can also type phi or sigma to view the probability of classes I–III and standard
deviations respectively.

For example:

octave:16> phi

phi =

0.35589

0.33333

0.31078

octave:17> sigma

sigma =

0.56852 0.17177 0.47892

0.28738 0.10613 0.18796

0.57168 0.34895 0.48216

0.28793 0.37719 0.29656

octave:18>

3.4.2 Interpretation of Results

With the results provided by AutoBayes, the means µ, the standard deviations σ2,
the class frequencies φ, and the most-likely class assignment c, we now can start to
interpret and visualize the results.

It is hardly surprising that the class frequency φ is, for each of the classes, around 0.3,
which means that roughly 30% of the measurements fall into each of the three classes.
The original set is actually constructed such that exactly 1/3 of the measurements
(50 out of 150) belong to each of the three types of Iris flowers (classes). Interestingly,
however, the numbers found by the AutoBayes model are not exactly those, which
means that some of the data points have been misclassified. A closer look at the data
points reveals more information. Please note that we do not use the class label, which
is provided with the original data set. Rather, our aim was to separate the data as
best as possible into three classes without knowing the answer.

Figure 3.2 shows a simple scatter plot of the 150 data points along the various pairs
of features. Because there are 4 variables, a 4× 4 matrix is needed. This figure shows

40 Iris Classical Example

Figure 3.1: This graph shows the logarithm of the error term convergence on the
y-axis and time (iteration) on the x-axis.

only the upper triangular part of the scatter matrix. In all plots, two groups can
easily distinguished. For the human eye, a classification of the data into three classes
seems to be impossible.

After running the AutoBayes-generated code, we present the same scatter plots,
however this time, each data point is colored according to its most probable class
membership ci (Figure 3.3).

Finally, the governing parameters of the three Gaussians (µi, σ
2
i) can be plotted into

such a scatter-plot. Figure 3.4 shows such a plot for a selected pair of features. The
thick magenta dots represent the center of the Gaussian, the cyan ellipsis corresponds
to a 1σ2 ellipsis. Also, we have indicated Fisher’s given classification by plotting three
different plot symbols (⊗, ⊙, ⊕). In a perfect classification, each kind of plot symbol
would be the same color. With such a visualization, it can easily be seen how the
data have been separated and where potential mis-classifications occur. These figures

3.4 Providing Input to the Iris Program and Analyzing Results 41

are only a few possibilities for visualization of the results.

0 5 10
0

1

2

3

Petal Length

P
et

al
 W

id
th

0 5 10
4

5

6

7

8

Petal Length
S

ep
al

 L
en

gt
h

0 5 10
2

3

4

5

Petal Length

S
ep

al
 W

id
th

0 1 2 3
4

5

6

7

8

Petal Width

S
ep

al
 L

en
gt

h

0 1 2 3
2

3

4

5

Petal Width

S
ep

al
 W

id
th

2 3 4 5
4

5

6

7

8

Sepal Width

S
ep

al
 L

en
gt

h

Figure 3.2: Scatter-plot for each of the four variables of the iris data set.

42 Iris Classical Example

0 5 10
0

1

2

3

Petal Length

P
et

al
 W

id
th

0 5 10
4

5

6

7

8

Petal Length

S
ep

al
 L

en
gt

h

0 5 10
2

3

4

5

Petal Length

S
ep

al
 W

id
th

0 1 2 3
4

5

6

7

8

Petal Width

S
ep

al
 L

en
gt

h

0 1 2 3
2

3

4

5

Petal Width

S
ep

al
 W

id
th

2 3 4 5
4

5

6

7

8

Sepal Width

S
ep

al
 L

en
gt

h

Figure 3.3: Scatter-plot for each of the four variables of the Iris data set. Most likely
classes for each data point are shown in different colors.

3.4 Providing Input to the Iris Program and Analyzing Results 43

1 2 3 4 5 6 7
4

4.5

5

5.5

6

6.5

7

7.5

8

Petal Length

S
ep

al
 L

en
gt

h

Figure 3.4: Scatter-plot for the features Petal length versus Sepal length with esti-
mated class parameters µ, σ2 shown.

44 Iris Classical Example

3.4.3 MatlabTM Scripts for Iris Plots

Listings 3.2 and 3.3 show the MatlabTM scripts used to generate Figures 3.2 and
3.3, and Figure 3.4, respectively. The AutoBayes-generated clustering algorithm
has been executed beforehand, so the estimated parameters mu, sigma, and class
assignment c are available.

1 f igure ;
2 S=5;
3

4 subplot (3 , 3 , 1) ;
5 s c a t t e r (Peta l l ength , Petal width , S , c) ;
6 xlabel (’ Peta l Length ’) ; ylabel (’ Peta l Width ’) ;
7

8 subplot (3 , 3 , 2) ;
9 s c a t t e r (Peta l l ength , Sepa l l ength , S , c) ;

10 xlabel (’ Peta l Length ’) ; ylabel (’ Sepal Length ’) ;
11

12 subplot (3 , 3 , 3) ;
13 s c a t t e r (Peta l l ength , Sepal width , S , c) ;
14 xlabel (’ Peta l Length ’) ; ylabel (’ Sepal Width ’) ;
15

16 subplot (3 , 3 , 5) ;
17 s c a t t e r (Petal width , Sepa l l ength , S , c) ;
18 xlabel (’ Peta l Width ’) ; ylabel (’ Sepal Length ’) ;
19

20 subplot (3 , 3 , 6) ;
21 s c a t t e r (Petal width , Sepal width , S , c) ;
22 xlabel (’ Peta l Width ’) ; ylabel (’ Sepal Width ’) ;
23

24 subplot (3 , 3 , 9) ;
25 s c a t t e r (Sepal width , Sepa l l ength , S , c) ;
26 xlabel (’ Sepal Width ’) ; ylabel (’ Sepal Length ’) ;

Listing 3.2: MatlabTM script used for generating Iris scatter plots

3.4 Providing Input to the Iris Program and Analyzing Results 45

1 f igure ;
2

3 S=5;
4

5 C=[’ r ’ , ’ g ’ , ’ b ’] ;
6 for i =1:3
7 cm=find (c==i −1) ;
8 plot (Pe ta l l eng th (cm) , Sepa l l eng th (cm) , [C(i) ’ o ’] , ’ markers i ze

’ , 10 ’) ;
9

10 hold on ;
11 end ;
12

13 plot (Pe ta l l eng th (1 : 5 0) , S epa l l eng th (1 : 5 0) , ’ kx ’) ;
14 plot (Pe ta l l eng th (51 : 100) , S epa l l eng th (51 : 100) , ’ k . ’) ;
15 plot (Pe ta l l eng th (101 : 150) , S epa l l eng th (101 : 150) , ’ k+’) ;
16 xlabel (’ Peta l Length ’) ;
17 ylabel (’ Sepal Length ’) ;
18 i 1 =1;
19 i 2 =3;
20

21 hold on ;
22

23 for c l =1:3 ,
24 plot (mu(i1 , c l) ,mu(i2 , c l) , ’m. ’ , ’ Markers ize ’ ,25) ;
25

26 for p=0:0 .1 : 2∗pi ,
27 x = mu(i1 , c l) + sigma (i1 , c l) ∗cos (p) ;
28 y = mu(i2 , c l) + sigma (i2 , c l) ∗ sin (p) ;
29 plot (x , y , ’ cx ’) ;
30 end ;
31 end ;

Listing 3.3: MatlabTM script for scatter-plot with estimated parameters

46 Iris Classical Example

4. System Functionality

In this chapter, we will describe the internal workings of the AutoBayes system.
First, an overview of the architecture of the AutoBayes system will be given. Then,
we will discuss how the code and the documentation is generated. Finally, we will
describe how AutoBayes can be used to generate artifical (random) data for the
given statistical model.

4.1 Overview

R
ew

rit
in

g

Test−data

Generator
Synthesis Kernel

E
qu

at
io

n

S
ol

ve
r

intermediate code

E
ng

in
e

Optimizer

AutoBayes
Input Parser

Code Generator S
ys

te
m

 u
til

iti
es

Library
Schema

intermediate code

internal representation

Figure 4.1: Principle Architecture of AutoBayes

In a first processing step, the given specification is parsed, converted into internal
form, and the Bayesian network is constructed. This step can also generate an external
representation for visualization purposes, using the graph drawing tool graphviz1. The
synthesis kernel then analyzes the network, tries to solve the given optimization task,
and instantiates appropriate algorithm schemas, which are given in a schema library.

1 http://www.graphviz.org

http://www.graphviz.org

48 System Functionality

Figure 4.1 shows the principle architecture of AutoBayes. The output of the
synthesis kernel is a program in a procedural intermediate language. AutoBayes’s
backend takes the intermediate code, optimizes it and generates code for the chosen
target system. Currently, C or C++ code is generated, which can be used in a stand-
alone way, or can be linked to the MatlabTM or Octave environment. The synthesis
kernel also produces detailed documentation in the form of an HTML design document
along with the code. Furthermore, AutoBayes can generate code which generates
artificial sampling data for the model, e.g., for visualization and testing purposes.

All parts of the AutoBayes system rely heavily on a symbolic subsystem and some
auxiliary system modules (e.g., pretty-printer, set representations, I/O functions). For
symbolic mathematical calculations, we implemented a small but reasonably efficient
rewriting engine in Prolog. Graph handling, simplification of mathematical expres-
sions, and an equation solver are implemented on top of it. The system architecture is
designed in such a way that most of its parts can be re-used for different domains. In
particular, the backend and symbolic subsystems are entirely independent of the data
analysis domain. For details on the principles of schema based program synthesis see
[FS03b].

4.2 Generating Code

The synthesis kernel of AutoBayes generates code in an intermediate language before
the code for the actual target system is produced. This intermediate language is a sim-
ple procedural language with several domain-specific extensions such as convergence
loops, vector normalization, simultaneous vector assignment, as well as assertions and
annotations. The domain-specific constructs allow target-specific optimizations and
transformations. For example, the sum construct of the intermediate language, for
calculating the sum of vector elements, can be converted into a “for” loop, an iterator
construct for sparse matrices, or a function call to a library. The language supports
most basic matrix operations.

The actual target-specific portion of the code generator is rather straightforward and
can be adapted to different target languages and enviroments. With the help of rewrite
rules all constructs of the intermediate language are transformed into constructs of the
target language and printed using a generic pretty-printer. The backend also generates
boiler-plate code to interface the algorithm with the target system, and optimizes the
code. However, standard optimizations (e.g., evaluation of constant expressions) are
left for the subsequent compilation phase. There is no need to perform the same
optimization steps that are already in many modern compilers.

4.3 Generating Documentation 49

4.3 Generating Documentation

Certification procedures for safety-critical applications (e.g., in aircraft or spacecraft)
usually mandate manual code inspection. This inspection requires that the code is
readable and well documented. Even for programs not subject to certification, under-
standability is a strong requirement because manual modifications are often necessary,
e.g., for performance tuning or system integration. However, existing code generators
often produce code that is hard to read and understand. In order to overcome this
problem, AutoBayes generates explanations along with the programs that show
“synthesis decisions”: which algorithm schemas have been used, how schema parame-
ters have been instantiated, etc. Model assumptions that were used and proof obliga-
tions that could not be discharged during the synthesis are laid out clearly. This makes
the synthesis process more transparent and provides traceability from the generated
program back to the model specification. In addition to the design document, Auto-
Bayes can also generate the mathematical derivation of the generated algorithm as
a LATEX-document, when the command-line flag -latex is used. For illustration pur-
poses, Chapter 8 shows the autogenerated derivations of selected examples, enclosed
between begin autogenerated document and end autogenerated document.

4.4 Generating Artificial Test Data

Visualization and simulation play important roles in the development of data analysis
programs. An AutoBayes model specification contains enough information to syn-
thesize code which generates artificial sampling data according to the specification.
Generating artifical test data is very helpful in understanding the model and the gen-
erated code. If the artificial data does not match the real data set or the scientist’s
expectations, the specified model might not reflect the reality properly. Artificial
data sets can also be used to assess and evaluate the performance of the synthesized
code before real data become available. This feature is of particular interest in cases
where AutoBayes allows the instantiation of different algorithms for the same spec-
ification. For example, if AutoBayes synthesizes different variants for initialization
of the hidden variable, their coarse relative performance can be assessed with the
generated test data.

Code for the generation of artificial test data can be produced easily by using the
commandline flag -sample on the AutoBayes specification. The system then gen-
erates a file sample model.cc that can be compiled in the usual way. Values for all
constants and the parameters which are to be estimated must be provided when this
function is called. It then returns random values for the data and hidden variables.
For example, the Iris example of Chapter 3 would generate the following sampling
function

50 System Functionality

[vector class_assignment,matrix iris_data] =

sample_iris_classical_example(matrix mu,int n_points,vector phi,matrix sigma)

Figure 4.2 shows a scatterplot of an artificially generated data set with 150 data
points. A comparison with Figure 3.3 on page 3.3 shows that the artificial sampling
data, generated by our statistical model, are very similar to the original data set.

0 5 10
−1

0

1

2

3

Petal Length

P
et

al
 W

id
th

0 5 10
4

5

6

7

8

Petal Length

S
ep

al
 L

en
gt

h

0 5 10
2

3

4

5

Petal Length

S
ep

al
 W

id
th

−2 0 2 4
4

5

6

7

8

Petal Width

S
ep

al
 L

en
gt

h

−2 0 2 4
2

3

4

5

Petal Width

S
ep

al
 W

id
th

2 3 4 5
4

5

6

7

8

Sepal Width

S
ep

al
 L

en
gt

h

Figure 4.2: Scatter-plot shown artificially generated sampling data from the Auto-
Bayes iris model (Listing 3.1)

5. Generated Algorithms

AutoBayes generates appropriate algorithms from algorithm skeletons with the help
of symbolic calculations. Typical algorithms include:

• clustering

• numeric optimization

5.1 Clustering Algorithms

AutoBayes uses clustering algorithms to generate code from certain statistical mod-
els. Clustering deals with finding a structure in a collection of unlabeled data. A brief
definition of clustering would be “the process of organizing objects into groups whose
members are similar in some way”. A cluster is therefore a collection of objects which
are “similar” and are “dissimilar” to the objects belonging to other clusters. Au-
toBayes currently implements two such algorithms, namely k-means and the EM
algorithm.

5.1.1 k-Means Algorithm

K-means (MacQueen, 1967) is one of the simplest unsupervised learning algorithms
that solve the well-known clustering problem. The procedure classifies a given data
set into a number (k) of clusters, where k is specified a priori. The main idea is to
define k-centroids, one for each cluster. These centroids should be placed initially in a
cunning way because different initial locations cause different results. A good choice
is to place them as far away from each other as possible. The next step is to take each
point from the given data set and associate it to the nearest centroid. This induces an
early clustering. At this point we need to recalculate k-new centroids as barycenters
of the clusters resulting from the previous step. For each group, this minimizes the
objective function that is the sum of the Euclidean distances of the centroid from
each point in the group. After we have these new centroids, the step is repeated
by associating each data point with the new nearest centroid. These steps are done
iteratively until the centroids do not move anymore. The output of the algorithm is
the location of the k-centroids.

52 Generated Algorithms

5.1.2 The EM Algorithm

An expectation-maximization (EM) algorithm is used in statistics for finding max-
imum probability estimates of parameters in probabilistic models, where the model
depends on unobserved latent (hidden) variables. The EM algorithm [MK97] alter-
nates between performing an expectation (E) step, which computes an expectation
of the likelihood by including the latent variables as if they were observed, and a
maximization (M) step, which computes the maximum likelihood estimates of the
parameters by maximizing the expected likelihood found during the E step. The pa-
rameters found in the M step are then used to begin another E step, and the process is
repeated. A detailed description of the algorithm as applied to a mixture-of-Gaussians
problem is given in Section 8.2.

5.2 Numerical Optimization Algorithms

AutoBayes uses numerical optimization algorithms in order to generate code for the
statistical model. The numerical optimization task is to find, given a single function
that depends on one or more parameters, values for those parameters where the given
function achieves its maximum or minimum value. For a comprehensive description
of well-known optimization algorithms see [GMW81]. Typical numerical optimization
algorithms that AutoBayes uses include:

• Nelder-Mead Downhill Simplex Method

• Golden Section Search Method

5.2.1 Nelder-Mead Downhill Simplex Method

The downhill simplex method [PFTV92] is due to Nelder and Mead. This method
only requires function evaluations, but not derivatives.Therefore, it is a natural choice
in many situations where no derivatives exist, or where they are very expensive to
calculate.

A simplex is a geometrical figure: in N dimensions, it is the convex hull of N + 1
independent points (or vertices). In two dimensions, a simplex is a triangle. In three
dimensions it is a tetrahedron (not necessarily a regular tetrahedron). In general we
are only interested in simplexes that are non-degenerate, i.e., that enclose a finite
inner N -dimensional volume. If any point of a non-degenerate simplex is taken as the
origin, then the N other points define vector directions that span the N -dimensional
vector space. For multidimensional minimization, the best we can do is give our
algorithm a starting guess, that is, an N -vector of independent variables as the first

5.2 Numerical Optimization Algorithms 53

point to try. The algorithm is then supposed to make its own way downhill through
the unimaginable complexity of an N -dimensional topography, until it encounters a
(local) minimum. The downhill simplex method must be started not just with a single
point, but with N + 1 points, defining an initial simplex.

5.2.2 Golden-Section Search Method

The Golden-Section search method [PFTV92] is a numerical optimization method
for continuous functions of a single variable which does not use derivatives at all
(i.e., it does not require either symbolic differentiation or numerical computation or
approximation of derivatives). The algorithm optimizes by iteratively bracketing the
minimum by a triplet of points, a < b < c, such that f(b) is less than both f(a) and
f(c) and b − a and c − b are related by the golden ratio. In this case we know that
there exists a local minimum in the interval (a, c). The algorithm chooses a new point
x, either between a and b or between b and c. Suppose, to be specific, that we make
the latter choice. Then we evaluate f(x). If f(b) < f(x), then the new bracketing
triplet of points is (a, b, x); otherwise, if f(b) > f(x), then the new bracketing triplet
is (b, x, c). This process continues until the distance between the two outer points of
the triplet is within a designated tolerance level. Note that the convergence is linear,
meaning that each iteration gains an additional binary digit of accuracy.

5.2.3 Initialization

General optimization algorithms (in particular the Nelder-Mead Simplex Algorithm)
require values for the starting point and values for the initial step size. Poor choices
can result in poor performance of the algorithm and even non-termination. Auto-
Bayes provides several ways for finding initial start and step values. Its behavior
can be controlled via two pragmas, schema control arbitrary init values and
schema control init values. The following methods for calculation of the start
value s0 and step δ0 are provided; Table 5.1 shows how the pragmas need to be set.

Range If the variable under consideration is restricted in its value range by con-
straints to [l, . . . , h], then s0 = l + (h − l)/2 and δ0 = (h − l)/10.

Prior If the variable has a prior, the initial values are determined by the moments
of the prior: s0 becomes the first moment, δ0 the second moment.

User Additional input arguments for the generated code are generated to provide s0

and δ0.

Arbitrary If no additional information is known, AutoBayes uses s0 = 1 and
δ0 = 1.

54 Generated Algorithms

Pragma Range Prior User Arbitrary

schema control arbitrary init values false false true true

schema control init values automatic automatic user arbitrary

Table 5.1: Control of initialization

5.3 Generic Optimization

Whenever AutoBayes encounters an optimization problem (maximization or min-
imization), it first attempts to find a closed-form solution. This can be attempted
by symbolically calculating the derivatives, setting them to zero, and solving the re-
sulting set of equations. In addition, the second derivatives are calculated (if they
exist) and checked for the correct sign. If such a solution cannot be found (e.g.,
there exists no closed form solutions, or if the symbolic solver in AutoBayes cannot
find a solution), the problem is divided into pieces which can be handled individu-
ally. If this does not yield results, numerical optimization algorithms are instanti-
ated. If this is not successful, AutoBayes fails to generate a program, unless the
pragma schema control use generic optimize=true is set. In that case, a (non-
executable) statement optimize(...) is generated in the final code for debugging
purposes.

6. Using AutoBayes

AutoBayes is a program generator for scientific data analysis programs. The input
problem is a file written as a specification of a data analysis problem in the form of
a statistical model with declarations, constraints, and a goal. Then AutoBayes is
invoked on that input file. From the outside, AutoBayes works very similar to a
compiler: AutoBayes reads the input file and command-line options and generates
an internal representation (a Bayesian network). Once the algorithms have been gen-
erated and optimized, AutoBayes generates the code files as well as various listing
and documentation files. In this reference chapter, we will discuss calling conventions,
common command-line flags, compilation of generated code, and AutoBayes error
messages.

6.1 Invoking AutoBayes on an Input File

To invoke AutoBayes on a specific input file, the autobayes command is used:

% autobayes [options] [pragmas] modelfilename.ab

Unless a specific target language is requested, this call will generate C++ code from
the input file by default. The extension for model files is “.ab”. The names of files
generated by AutoBayes are derived from the name of the statistical model (given
by the model declaration in the input specification, i.e,

model modelname as ’. . .’.

or, in one case, from the model’s filename. For the following, we assume the model
name is modelname and the model’s filename is modelfilename.

Each option is specified by a flag on the command line optionally followed by an
argument. Each pragma is introduced by the flag ‘-pragma’ followed by a pragma
variable and its setting. The following sections describe options and pragmas in more
detail.

6.1.1 Generated File Names

The files below can be generated by AutoBayes.

56 Using AutoBayes

• cpp modelfilename.ab The model file preprocessed by cpp.

• modelname.cc The generated C++ code.

• modelname.c The generated C code.

• modelname.cc.html The generated C++ code in html format.

• modelname.c.html The generated C code.in html format

• modelname.log The default log file generated when the ‘-log’ option is speci-
fied. A particular file can be specified using the ‘-logfile’ option.

• modelname design.htmlThe html design document generated when the ‘-designdoc”
flag is specified.

• modelname.dot The graphical representation of the Bayes net generated when
either the ‘-dot’ or ‘-designdoc’ flag is specified.

• modelname.stage.list where stage is synt, iopt, inst, lang, prop, ann, or
lopt. These are results of intermediate stages of the program synthesis pro-
cess, generated when the ‘-list’ option is specified. The interesting ones are
synt which is the synthesized program written in the high-level intermediate
language, and lang, which is the transformed program just before printing out
the C/C++.

• modelname.stage.dump Same as the above files, but presented in the internal
Prolog format.

• modelname.stage.tex The LATEXfile of results of the intermediate stages of the
program synthesis process. This file is generated when the ‘-tex’ flag is specified.
Providing ‘synt’ as the stage generates a LATEXfile giving the derivation of the
generated program.

• sample modelname.cc The C++ program synthesized to generate artificial data
(see Section 4.4).

• sample modelname.c The C program synthesized to generate artificial data (see
Section 4.4).

6.2 Command-Line Flags

AutoBayes command line options are set by specifying flags with the autobayes

command. For instance ‘-help’ is a flag that can be used along with the autobayes

command to view a list of all available flags. Appendix A.1 lists all flags.

6.2 Command-Line Flags 57

For example:

% autobayes -help

The general format is:

% autobayes -flag flag-options

6.2.1 Help Flag

Using the ’-help’ flag alone will display a list of flags and their options and usages.

For example:

% autobayes -help

Providing a flag as argument to the help flag, as in ‘-help flag ’, displays the usage
of the option associated with the particular flag flag.

6.2.2 Design Document Flag

The ‘-designdoc’ flag will generate a software design document for the specified
model in html format. It will also generate in a ‘.dot’ file a visualization of the Bayes
net1. For example:

% autobayes -designdoc modelfilename.ab

You can specify a name for the generated document by using:

% autobayes -designdoc designdocfilename modelfilename.ab

The design document contains the following information.

• Summary

List of File Names

• Input Specification

Textual Input Specification

Graphical Representation

• The Code Generation Process

AutoBayes Command Line Parameters

1See Section 8.2.1 for an example visualization.

58 Using AutoBayes

• Generated code

Interface

Input and Output Parameters for Generated Code

Assertions and Error Handling

Intermediate Code

Final Code

• Warnings/Errors

Synthesis Constraints

Compiler Warnings

The ‘.dot’ file can be converted to a ‘.jpg’ format using the ‘dot’ command; for
example:

% dot -Tjpg filename.dot > filename.jpg

6.2.3 Target Flag

This flag gives the user the option to specify the language of the generated code. By
default it is set to generate C++ code, but the ‘-target’ flag controls the generated
code language. Available language and runtime environments are:
c standalone matlab modula2 octave spark

For example:

% autobayes -target c standalone modelfilename.ab

will generate output in C code and

% autobayes -target matlab modelfilename.ab

will generate C code which can be dynamically linked into the MatlabTM environ-
ment.

6.2.4 Artificial Data Flag

The flag ‘-sample’ specifies generation of a program to generate artificial sample data.
See Section 4.4.

6.3 Pragmas 59

6.3 Pragmas

AutoBayes pragmas are low-level flags and commands to control specific actions in
the AutoBayes system. Their main purpose is to help the developer and advanced
user guide the AutoBayes system in a specific way. Pragmas are specified in the
command line as follows:

% autobayes . . . -pragma pragma=value . . .

There should not be any spaces around the equal sign. The complete list of pragmas
and allowable values for each is given in Appendix A.2. Also, a complete list of
AutoBayes pragmas can be obtained using the ‘help’ option:

% autobayes -help pragmas

Several pragmas control aspects of the EM algorithm: em, em log likelihood convergence,
em q output, and em q update simple; see the Appendix for details and Section 8.2.1.

6.4 Compiling and Running the Generated Code

AutoBayes generates standalone C code or dynamically linked MatlabTM/Octave
C/C++ code. In order to provide input and run the generated stand-alone C code,
a driver program is needed. The generated program needs to be compiled in order to
have it run under the MatlabTM/Octave systems.

If the code generated is going to run under MatlabTM/Octave environment, then
the following steps need to be taken after code generation:

• Load the data

• Call the AutoBayes-generated statistical model code on the data

• Generate plots and analyze the results.

In the MatlabTM/Octave environment:

load ‘data.dat’

[mu, sigma,..] = mog (...)

plot (...)

6.4.1 Compiling and Running the Generated Program: Octave

To run the code, we first need to compile the generated program and create an Octave
file. For compiling and creating an Octave file we use the mkoctfile command.

60 Using AutoBayes

% mkoctfile -I$AUTOBAYESHOME/system/octave/include modelname.cc

For the mixture of Gaussians example in Section 8.2.1:

% mkoctfile -I$AUTOBAYESHOME/system/octave/include mog.cc

This will produce an Octave file. We then enter the Octave environment by typ-
ing octave to the command line. To see the usage of synthesized code, invoke the
generated code by entering the name of the model in the Octave environment:

octave:1> mog

For our example, vector input is provided and parameter values are returned:

usage: [vector c,vector mu,vector rho,vector sigma] =

mog(vector x,

double tolerance,

int maxiteration)

6.4.2 Compiling and Running the Generated Program: MatlabTM

To run the code, we first need to compile the generated program and create a mex-file.
For compiling and creating a mex-file we use the mex command.

% mex -I$AUTOBAYESHOME/system/matlab/include modelname.c

Please note modelname.cc is for Octave and modelname.c is for MatlabTM.

For the mixture of Gaussians example in Section 8.2.1:

% mex -I$AUTOBAYESHOME/system/matlab/include mog.c

This command will produce a MatlabTM file; then we enter the MatlabTM environ-
ment by typing matlab to the command line. We call the generated code by typing
the name of the model to the MatlabTM command-line; for example:

>> mog

This returns the usage of the synthesized code. For the mixture of Gaussians example,
vector input is provided and parameter values are returned:

usage: [vector c,vector mu,vector rho,vector sigma] =

mog(vector x,

double tolerance,

int maxiteration)

6.5 AutoBayes Error and Warning Messages 61

6.5 AutoBayes Error and Warning Messages

At different stages the user may encounter different error messages. Below we have
categorized the types of error messages the user may encounter during the process of
using AutoBayes.

6.5.1 Interface (command-line) Errors

A command-line error can occur when the user sets a pragma to a wrong or uniden-
tifiable value, or when an erroneous value is given as the argument to a flag.

6.5.2 Syntax Errors

A syntax-error message occurs when there is a syntax error in the specification of a
statistical model. A syntax error could be in any segment of the model specification.
Below is a list of syntax error messages with corresponding sections of specification
model.

• Commented Declarations

Error Message: ‘error in declaration’

This could be a result of not following the conventions for making comments.
The proper keyword for making comments is ‘as’.

• Equations

Error Message: ‘error in equation’

This could be a result of not using the proper operator which is ‘:=’ for defining
equations.

• Distributions

Error Message: ‘error in distribution’

This could be a result of not using the proper distribution operator which is ‘~’
for distributions.

• Simple Declarations

Error Message: ‘error in {const, data, datastream, output, external,

function} declaration’

This could be a result of using the wrong type for declaring a variable. Make
sure only int, nat, or double are used.

62 Using AutoBayes

• Constraints

Error Message: ‘error in constraint’

This could be a result of not using the proper keywords for setting constraints.
The proper keywords are where and with.

• Approximations

Error Message: ‘error in approximation declaration’

This could be a result of not using the proper operators for setting approxima-
tions between two terms within a given bound. The proper keywords are: ~~,

witherror.

• Complexity Constraints

Error Message : ‘error in complexity declaration’

This could be a result of not using the proper operators for defining complexity
constraints. The proper keywords are: complexityof, withbound.

6.5.3 Code-Generation Errors

Basically these are semantic errors that can occur during the process of code genera-
tion. A common code-generation error is ‘no code generated’. This indicates that
no synthesized code has been generated.

6.6 Debugging AutoBayes Specifications

6.6.1 Running AutoBayes

no programs generated For the given specification, no program could be generated.
This can have a multitude of reasons. For debugging, setting the pragma
-pragma schema_control_use_generic_optimize=true

can help. In this case, AutoBayes generates a “call” to a generic optimizer for
all subproblems it cannot solve. An inspection of these pieces of code can yield
helpful insights.

6.6.2 Running AutoBayes-generated Code

• A run-time message assertion violation n_classes > 10 * n_pointsmeans
that a constraint given in the specification is violated. For example, assertion

6.6 Debugging AutoBayes Specifications 63

violation n classes << n points means the number of data points in the
clustering problem is too small. Try to reduce the number of classes.

Often, this error indicates that the data vector is in the wrong order. Try to
call the generated code with the transposed data array.

64 Using AutoBayes

7. Specification Language

AutoBayes is a program synthesis tool for the statistical data analysis domain. Its
input specification language is a concise description of a data analysis problem in the
form of a statistical model; its output is optimized and fully documented C/C++
code which can be linked dynamically into MatlabTM and Octave environments1.

In general, the format for the statistical model input (in a file with the extension .ab)
is as follows:

1. Model header: model M as ’model comment’.

2. Constant declarations

3. Priors (hyperparameters, distributions, constraints)

4. Data (distributions, declarations, parameters and constraints)

5. Goal, which is estimating parameters that maximize a probability term.

Chapter 8 gives many examples of AutoBayes models, which are almost self-explanatory.
This chapter introduces the syntax of AutoBayes models.

7.1 Model Declarations and Syntax

Comments in the model follow the percent character ‘%’. Comments can also be
enclosed in ‘/*’ and ‘*/’ in a C-style manner. A comment can be associated with a
variable by writing as ’comment’ (see below).

All declarations and statements end in a period (‘.’).

Names of constants, parameters and statistical variables can consist of the alphabetic
(lower and upper case) and numeric characters, as well as underscore (“_”), starting
with a lowercase letter, e.g., n points. Index variables, usually used to quantify over
a vector or matrix, must start with a capital letter, e.g. x(I). This indicates that the
declaration that it occurs in is true for all values of the variable; i.e., the declaration
is universally quantified over I. For example, x(I) ∼gauss(mu(I), sigma(I)) means

∀ 0 ≤ i < length(x) : xi ∼ N(µi, σi)

1Other target languages include C for stand-alone applications and Ada.

66 Specification Language

Sometimes a variable appears only once in a declaration, in which case, as in Prolog,
an underscore (“_”) can be used instead of a variable name, but this still means
universal quantification. Its meaning is similar to the MatlabTM expression “1:end”

In order to facilitate a style more aligned with mathematical notation, the pragma
prolog style can be set to false. Then, variables can start with a lower or upper-
case letter and index variables must start with an underscore (‘_’), e.g., X(_i).

A variable may be specified with one of four modes:

• const, in which case the value of the variable will be given in the specification
with a ‘:=’ or is an input to the generated function (or in the case it is the
length of input data, it is computed from the input data given to the generated
function);

• data, in which case it will be an input to the generated function;

• output, in which case it will be an output of the generated function;

• (empty).

The input and output synopsis for the generated code is established according to the
following rules:

• data variables are inputs.

• constants are inputs unless

they have an assigned value using ‘:=’

they are defined by the size of a data variable, e.g., data x(0..n).

• parameters for specific purposes are inputs. These are generated by Auto-
Bayes according to internally-used algorithms. Typical examples are error
thresholds (tolerance) and upper bounds for the number of iterations (maxiteration).

• estimated parameters in the goal statement are outputs.

• variables explicitly declared “output” are outputs.

• system-generated information, e.g., a convergence vector or the log-likelihood,
are outputs. This is controlled by the generated algorithm or specific pragmas.

• all parameters, input and output, are sorted alphabetically.

Scalar variables, and the entries of vector or matrix-valued variables, may be of type
double, int, or nat, where the latter means the value is an integer greater than or equal
to zero.

7.1 Model Declarations and Syntax 67

Scalar variables are declared by writing:

mode type varname as ’comment’.

where the as ’comment’ is optional but recommended.

Vector variables are declared by writing:

mode type varname(0 .. max index)as ’comment’.

Matrix variables are declared by writing:

mode type varname(0 .. max row index, 0 .. max column index)as ’comment’.

All lower indices must be 0 (C-style array indexing).

A variable may be constrained by either specifying a distribution for it, a value, or by
specifying range restrictions:

• var ∼ distribution

• expr ∼ distribution (the expression involves the random variable)

• var := value

• where range−restriction . Range restrictions may be x in min .. max or a boolean
expression involving the variable and =, <, >, =<, >=, <<, or >>.

Table 7.1 lists the predefined distributions.

The discrete distribution takes as argument a probability vector v, say of length
n. For a discrete random variable X that ranges over [0 . . . n − 1], the constraint
x∼discrete(v) means

∀0 ≤ j < n : Pr(X = j) = v(j)

The discrete distribution is used in conjunction with the vector construct. The
construct vector(I := 0 .. n−1, expr(I)) creates an n element vector whose ith element
is the value of expr(i). We have seen an example use in the Iris model in Listing 3.1:

1 c l a s s a s s i gnment () ∼ discrete (vec to r (I := 0 . . n c l a s s e s −1, phi (I))) .

This specifies that the probability of an entry in the class assignment vector being j
is φ(j), i.e.,

∀0 ≤ i < length(class assignment) : Pr(class assignment(i) = j) = φ(j)

AutoBayes recognizes these operators in arithmetic expressions: +, -, *, /, ** (ex-
ponentiation), sqrt, log, exp (ex), sum(I := min .. max, arith expr(I)),

68 Specification Language

Distribution Keyword

Bernoulli x ∼bernoulli(p)

Beta x ∼beta(alpha, beta)

Binomial x ∼binomial(n, p)

Cauchy x ∼cauchy(alpha, beta)

Discrete x ∼discrete(p())

Dirichlet x ∼dirichlet(alpha)

Exponential x ∼exponential(lambda)

Gamma x ∼gamma(k, theta)

Gauss x ∼gauss(mu, sigma)

Inverse Gamma x ∼ invgamma(k, invtheta)

Mixture x ∼mixture(E cases [val1 −>dist1, ...])

Poisson x ∼poisson(lambda)

Uniform x ∼uniform(min val .. max val)

vonMises x ∼vonmises(N, mu, kappa)

Weibull x ∼weibull(alpha val, beta val)

a

Table 7.1: List of Probability Distributions

cond(bool expr, true arith expr , false arith expr), and expr cases [val −> distribution, ...]. An
example of the use of log for transforming data is given Listing 8.5 (Page 81). We
have already seen in the Iris model in Listing 3.1 (Page 32) a use of the sum con-
struct to specify the constraint that φ is a probability vector that sums to 1. The
cond construct returns the value of the true arith expr if bool expr evaluates to
true; otherwise it returns the value of false arith expr. It is used in the random
walk model in Listing 8.16 (Page 106) and in the change point detection model in
Listing 8.17 (Page 107). The cases construct is used in the mixture model given in
Listing 8.14 (Page 102).

The AutoBayes goal expression is of the form:
max pr({vars1} | {vars2}) for { vars3 }.
Data variables typically appear in vars1 of the expression. The goal is to find values
for the variables vars3 that maximize the conditional probability expression.

Directives to AutoBayes, like pragmas, may be included in the model by writing
pragma pragma=value. A list of directives is given in Appendix A. Arbitrary Prolog
code may also be included in the model. It can be used to give hints to AutoBayes
as to how to produce a closed-form solution to a subproblem. An example of this is
given in Section 8.2.4 (Page 99).

7.1 Model Declarations and Syntax 69

Here we provide the set of keywords for the AutoBayes input model syntax.

pragmas pragma

version header version

include include

comments as ’comment’
distribution expr ∼ distribution

assignment var := value

vector declaration var(0 .. max index)

matrix declaration var(0 .. max row index, 0 .. max col index)

expression operators +, −, ∗, /, ∗∗, sqrt , log , exp, sum, cond, cases

vector constructor vector(I := 0 .. n, expr(I))

types double, int, nat

mode const, data, output

constraints where

goal max pr({data 1,...} | {param 1, ...}) for { param 1, ... }

70 Specification Language

8. Statistical Models — Examples

In this chapter, we will present a larger number of AutoBayes specifications from
various application areas. The purpose of this chapter is twofold. On one hand, these
examples have been collected to demonstrate the capabilities of the AutoBayes
system. For several examples, we also present the detailed mathematical derivation of
the problem, as it is automatically generated and typeset (in LATEX) by AutoBayes
by specifying the -tex synt flag option. These derivations demonstrate that for
the synthesis of a customized data analysis algorithm, often substantial amounts of
mathematical derivations have to be performed before the problem can be solved—
something traditional libraries cannot offer.

The presented examples also show how compact and flexible the specification language
for AutoBayes is. Table 8.2 (Page 118) lists all examples from this section, the
lengths of their specifications, file names (in the AutoBayes distribution), and the
length of the generated C++ code (including comments). Although these numbers
should be viewed with caution, they demonstrate AutoBayes’s excellent code-to-
specification ratio. Also, the point is that an AutoBayes specification is a high-
level, understandable description of a statistical problem, whereas the program is a
low-level description of its solution; there are cases where the solution can be expressed
succinctly in closed form, but only after a lengthy derivation.

The second purpose of this chapter is to provide the user with a wealth of pre-defined
specifications that can be used, modified, and refined for a specific purpose.

Notes

• Automatically generated derivations are enclosed between begin autogener-
ated document and end autogenerated document.

• AutoBayes generates internal variables in many places, e.g., index variables.
They have the syntax pvn, where n is a number. For example, pv65 is such an
autogenerated variable name.

72 Statistical Models — Examples

• AutoBayes’s Gaussian is defined with respect to standard deviation; i.e., both
x˜gauss(mu, sigma) and x˜gauss(mu, sqrt(sigma sq)) mean x ∼ N(µ, σ2). This is a
deviation from the form used by MatlabTM and Octave.

• In order to facilitate pretty-printing of the generated explanations, variables
ending in sq are assumed to be squares; e.g., sigma sq is typeset as σ2. This
rule is for typesetting in LATEX only and such variable names have no specific
semantics.

8.1 Introductory Examples

8.1.1 Normal Distributed Data

This very primitive example shows the basic input syntax for AutoBayes and demon-
strates its symbolic calculation capabilities: given n data points x1, . . . , xn, which are
Gaussian distributed with an unknown mean µ and variance σ2, i.e., xi ∼ N(µ, σ2),
the task is to estimate the unknown µ and σ2. Listing 8.1 shows the AutoBayes
specification for this problem.

1 model normal as ’Normal Distributed Data’ .
2

3 const nat n as ’number of data points ’ .
4

5 double mu as ’unknown mean ’ .
6 double s igma sq as ’unknown variance ’ .
7 where 0 < s igma sq .
8

9 data double x (0 . . n−1) as ’given data points ’ .
10

11 x () ∼ gauss (mu, sq r t (s igma sq)) .
12

13 max pr (x | {mu, s igma sq }) for {mu, s igma sq }) .

Listing 8.1: AutoBayes specification for normal distributed data.

Line 1 specifies the name of the model. AutoBayes will generate a function with
the name normal. In Line 3, the number of data points is specified to be a constant.
It has to be known during runtime. Lines 5–6 specify the unknown parameters µ and
σ2 with the constraint that σ2 > 0.

In Line 9, the input data variable x is declared. This vector of data is provided at
runtime to the synthesized function. From this vector, the value of n is calculated
automatically.

8.1 Introductory Examples 73

Line 11 describes in statistical terms the distribution of the data. The underscore
indicates that each element of the data vector has the same distribution. Finally,

Line 13 specifies the data analysis task: finding the values of µ and σ2 that maximize
the probability of the data given µ and σ2.

It is obvious that the expected result for this problem is the following two equations
(this problem can be solved in closed form):

µ =
1

n

n
∑

i=1

xi

σ2 =
1

n

n
∑

i=1

(xi − µ)2

AutoBayes produces a piece of code which exactly contains these sums calculated
with nested for loops. However, these equations are not hard-coded into the system;
rather, a detailed derivation of these equations is produced. In the following, the main
steps of the derivation are presented, exactly as they are produced by AutoBayes
(with the option -tex synt)1:

begin autogenerated document
The conditional probability P(x | µ, σ2) is under the dependencies given in the model
equivalent to

−1+n
∏

i=0

P(xi |µ, σ2)

The probability occurring here is atomic and can thus be replaced by the respective
probability density function given in the model. This yields the log-likelihood function

log
−1+n
∏

i=0

exp

−1

2
(xi − µ)2

(σ2)
1

2
2

1
√

2 π (σ2)
1

2

which can be simplified to

−1

2
n log 2 + −1

2
n log π + −1

2
n log σ2 +

−1

2
(σ2)

−1
−1+n
∑

i=0

(−1 µ + xi)
2

1The only changes applied were to break long formulas. AutoBayes automatically typesets a
variable whose name is a Greek letter as the Greek letter, and a variable whose suffix is ‘ sq’ is
typeset as the square of the prefix.

74 Statistical Models — Examples

This function is then optimized w.r.t. the goal variables µ and σ2.

The summands

−1

2
n log 2

−1

2
n log π

are constant with respect to the goal variables µ and σ2 and can thus be ignored for
maximization.

The factor

1

2

is non-negative and constant with respect to the goal variables µ and σ2 and can thus
be ignored for maximization.

The function

−1 n log σ2 + −1 (σ2)
−1

−1+n
∑

i=0

(−1 µ + xi)
2

is then symbolically maximized w.r.t. the goal variables µ and σ2. The partial differ-
entials

∂f

∂µ
= −2 µ n (σ2)

−1
+ 2 (σ2)

−1
−1+n
∑

i=0

xi

∂f

∂σ2 = −1 n (σ2)
−1

+ (σ2)
−2

−1+n
∑

i=0

(−1 µ + xi)
2

are set to zero; these equations yield the solutions

µ = n−1

−1+n
∑

i=0

xi

σ2 = n−1

−1+n
∑

i=0

(−1 µ + xi)
2

end autogenerated document

8.1 Introductory Examples 75

8.1.2 Working with Priors

A more Bayesian flavor can be given to the above example if we assume that we have
some prior knowledge about one or both of the unknown parameters µ or σ2.

1 model normal known variance as ’Normal model with prior on mean
2 and known variance ’ .
3

4 const nat n as ’number of data points ’ .
5

6 % Priors (hyperparameters & distribution)
7

8 const double mu 0 as ’ prior on mu (mean of means) ’ .
9 const double tau 0 as ’ prior on mu (variance of means) ’ .

10 where 0 < tau 0 .
11

12 double mu ∼ gauss (mu 0 , sq r t (tau 0)) .
13

14 const double s igma sq as ’ sigma squared ’ .
15 where 0 < s igma sq .
16

17 data double x (0 . . n−1) as ’given data points ’ .
18

19 x () ∼ gauss (mu, sq r t (s igma sq)) .
20

21 max pr ({x , mu} | s igma sq) for {mu} .

Listing 8.2: Specification for normal distributed data with priors.

Listing 8.2 shows the specification for the case where the variance is given exactly, and
we have some prior knowledge about the mean, i.e., µ ∼ N(µ0, sqrt(τ0)). This model
has been adapted from [Bis95]. Again, AutoBayes finds the closed-form solution:

µ = µ0
σ2

(σ2 + n τ0)
+

τ0

(σ2 + n points τ0)

−1+n
∑

i=0

xi

1 model normal as ’Normal model with conjugate priors ’ .
2

3 const nat kappa 0 as ’number prior data points ’ .
4 where 0 < kappa 0 .
5 const double mu 0 as ’ prior on mu (mean of means) ’ .
6

7 double mu ∼ gauss (mu 0 , sq r t (s igma sq /kappa 0)) .
8

9 const double s igma 0 sq as ’ prior on sigma sq ’ .
10 where 0 < s igma 0 sq .

76 Statistical Models — Examples

11 const double de l t a 0 as ’degree of belief in sigma 0 sq ’ .
12 where 0 < de l t a 0 .
13

14 double s igma sq ∼ invgamma(d e l t a 0 /2+1 , s igma 0 sq ∗(d e l t a 0 /2)) .
15 where 0 < s igma sq .
16

17 const nat n po in t s as ’number of data points ’ .
18 where 0 < n po in t s .
19

20 data double x (0 . . n po ints −1) as ’current data points (known) ’ .
21 x () ∼ gauss (mu, sq r t (s igma sq)) .
22

23 max pr ({x , mu, s igma sq }) for {mu, s igma sq } .

Listing 8.3: Specification for normal distributed data with conjugate priors

Listing 8.3 shows the specification for the case, where conjugate prior information is
available for µ and σsq. The priors are specified as the respective conjugate priors for
the Gaussian distribution, i.e., µ is distributed as Gaussian itself, and σ2 is distributed
as an inverse gamma.

The prior on µ takes a constant µ0 as mean; this prior mean has been established from
κ0 prior observations. The standard deviation

√

σ/κ0 is largely a mathematically
convenient choice which in the end eliminates all dependencies between µ and σ2.
Other values should be possible as well. The prior on σ2 takes constants σ2

0 and δ0 as
parameters where δ0 can be considered to be the degree of belief that σ2 is the “right”
variance. This model is adapted from the normal model with unknown parameters in
[BS94, GCSR95].

begin autogenerated document
The joint probability P(µ, σ2, x) is under the dependencies given in the model equiv-
alent to

P(µ | σ2)P(σ2)
−1+n
∏

i=0

P(xi |µ, σ2)

All probabilities occurring here are atomic and can thus be replaced by the respec-
tive probability density functions given in the model. This yields the log-likelihood
function

log exp

−

1

2
δ0 σ2

0

σ2

exp

−1

2
(µ − µ0)

2

(σ2 κ−1
0)

1

2
2

(σ2)

−(1+1+ 1

2
δ0)

8.1 Introductory Examples 77

1√
2 π (σ2 κ−1

0)
1

2

(
1

2
δ0 σ2

0)
1+ 1

2
δ0

Γ(1 +
1

2
δ0)

−1+n
∏

i=0

exp

−1

2
(xi − µ)2

(σ2)
1

2
2

1
√

2 π (σ2)
1

2

which can be simplified to

−1 log Γ(1 +
1

2
δ0) + −5

2
log σ2 + −3

2
log 2 + −1

2
δ0 σ2

0 (σ2)
−1

+

−1

2
δ0 log 2 + −1

2
δ0 log σ2 + −1

2
κ0 (σ2)

−1
(µ + −1 µ0)

2 + −1

2
n log 2 +

−1

2
n log π + −1

2
n log σ2 + −1

2
log π +

−1

2
(σ2)

−1
−1+n
∑

i=0

(−1 µ + xi)
2 +

1

2
δ0 log δ0 +

1

2
δ0 log σ2

0 +
1

2
log κ0 + log δ0 + log σ2

0

This function is then optimized w.r.t. the goal variables µ and σ2.

The summands

−1 log Γ(1 +
1

2
δ0)

−3

2
log 2

−1

2
δ0 log 2

−1

2
n log 2

−1

2
n log π

−1

2
log π

1

2
δ0 log δ0

1

2
δ0 log σ2

0

1

2
log κ0

log δ0

log σ2
0

are constant with respect to the goal variables µ and σ2 and can thus be ignored for
maximization.

78 Statistical Models — Examples

The factor

1

2

is non-negative and constant with respect to the goal variables µ and σ2 and can thus
be ignored for maximization.

The function

−5 log σ2 + −1 δ0 σ2
0 (σ2)

−1
+ −1 δ0 log σ2 + −1 κ0 (σ2)

−1
(µ + −1 µ0)

2 + −1 n log σ2 +

−1 (σ2)
−1

−1+n
∑

i=0

(−1 µ + xi)
2

is then symbolically maximized w.r.t. the goal variables µ and σ2. The partial differ-
entials

∂f

∂µ
= −2 κ0 µ (σ2)

−1
+ −2 µ n (σ2)

−1
+ 2 κ0 µ0 (σ2)

−1
+ 2 (σ2)

−1
−1+n
∑

i=0

xi

∂f

∂σ2 = −5 (σ2)
−1

+ −1 δ0 (σ2)
−1

+ −1 n (σ2)
−1

+ δ0 σ2
0 (σ2)

−2
+

κ0 (σ2)
−2

(µ + −1 µ0)
2 + (σ2)

−2
−1+n
∑

i=0

(−1 µ + xi)
2

are set to zero; these equations yield the solutions

µ = κ0 µ0 (κ0 + n)−1 + (κ0 + n)−1

−1+n
∑

i=0

xi

σ2 = δ0 σ2
0 (5 + δ0 + n)−1 + κ0 (5 + δ0 + n)−1 (µ + −1 µ0)

2 +

(5 + δ0 + n)−1

−1+n
∑

i=0

(−1 µ + xi)
2

end autogenerated document

8.1.3 Combining Measurements

This example was motivated by the introduction to Kalman filters presented in Section
1.5 of [MAY79]. Suppose we have two imperfect measuring devices. Each is modeled
as returning a Gaussian-distributed measurement with a known bias and standard
deviation around the actual value. If a measurement is made with each, how should
the two measurements be combined to obtain a better estimate of the true value? The
AutoBayes model for this situation is given in Listing 8.4.

8.1 Introductory Examples 79

1 model biased measurements as ’Estimate true value given two biased
measurements ’ .

2

3 const double b i a s 1 .
4 const double b i a s 2 .
5

6 const double s igma 1 .
7 where 0 < s igma 1 .
8 const double s igma 2 .
9 where 0 < s igma 2 .

10

11 double mu.
12

13 data double x 1 .
14 data double x 2 .
15

16 x 1 ∼ gauss (mu + bias 1 , s igma 1) .
17 x 2 ∼ gauss (mu + bias 2 , s igma 2) .
18

19 max pr ({x 1 , x 2 } | {mu, b ias 1 , b ia s 2 , sigma 1 , s igma 2 }) for {mu
} .

Listing 8.4: AutoBayes specification for two biased measurements

AutoBayes is able to solve this problem symbolically, yielding

x1σ
2
2 + x2σ

2
1 − bias1σ

2
2 − bias2σ

2
1

σ2
1 + σ2

2

begin autogenerated document
The conditional probability P(x1, x2 | µ) is under the dependencies given in the model
equivalent to

P(x1 | µ)P(x2 | µ)

All probabilities occuring here are atomic and can thus be replaced by the respective
probability density functions given in the model. This yields the log-likelihood func-
tion

log exp

−1

2
(x1 − (bias1 + µ))2

σ2
1

exp

−1

2
(x2 − (bias2 + µ))2

σ2
2

1

σ1

√
2 π

1

σ2

√
2 π

80 Statistical Models — Examples

which can be simplified to

−1 log 2 + −1 log π + −1 log σ1 + −1 log σ2 + −1

2
σ−2

1 (x1 + −1 bias1 + −1 µ)2

+ − 1

2
σ−2

2 (x2 + −1 bias2 + −1 µ)2

This function is then optimized w.r.t. the goal variable µ. The summands

−1 log 2

−1 log π

−1 log σ1

−1 log σ2

are constant with respect to the goal variable µ and can thus be ignored for maxi-
mization. The factor

1

2

is non-negative and constant with respect to the goal variable µ and can thus be
ignored for maximization.

The function

−1 σ−2
1 (x1 + −1 bias1 + −1 µ)2 + −1 σ−2

2 (x2 + −1 bias2 + −1 µ)2

is then symbolically maximized w.r.t. the goal variable µ. The differential

−2 bias1 σ−2
1 + −2 bias2 σ−2

2 + −2 µ σ−2
1 + −2 µ σ−2

2 + 2 x1 σ−2
1 + 2 x2 σ−2

2

is set to zero; this equation yields the solution

−1 bias1 σ2
2 (σ2

1 + σ2
2)

−1 + −1 bias2 σ2
1 (σ2

1 + σ2
2)

−1 + x1 σ2
2 (σ2

1 + σ2
2)

−1 + x2 σ2
1 (σ2

1 + σ2
2)

−1

end autogenerated document

As part of its optimization phase, AutoBayes generates code that computes common
subexpressions only once, as is evident in the generated C/C++ code:

pv0 = sigma_2 * sigma_2;

pv1 = sigma_1 * sigma_1;

mu = (x_1 * pv0 + x_2 * pv1 - bias_1 * pv0 - bias_2 * pv1) / (pv0 + pv1);

8.1 Introductory Examples 81

8.1.4 Transformations: log-normal and square-normal

Data which has undergone some transformations can be modeled in AutoBayes.
A typical example is log-normal distributed data (Listing 8.5). Other examples for
transformation of the input data are:

• the log-it transformation. Here, the ratio of xi/(1−xi) is log-normal distributed.
The corresponding AutoBayes line is as:
log(x(I)/(1−x(I))) ∼gauss(mu, sqrt(sigma sq)).

• the square transformation with a distribution. Here, the square of each data
value, xi, is normal distributed. In AutoBayes-syntax, we write
x(I)∗∗2 ∼gauss(mu, sqrt(sigma sq)).

Note that the current version of AutoBayes only allows the user to specify a limited
set of transformations.

1 model l og normal as ’Log−normal model ’ .
2

3 . . . % specification as ”normal” above
4

5 data double x (0 . . n po ints −1) as ’current data points (known) ’ .
6 l og (x ()) ∼ gauss (mu, sq r t (s igma sq)) .
7

8 max pr (x | {mu, s igma sq }) for {mu, s igma sq } .

Listing 8.5: AutoBayes specification for log-normal distributed data.

8.1.5 Other distributions: Cauchy

Of course, data are not always Gaussian distributed. Rather, some other probability
density function for the data (or even a mixture) is required. A typical data anal-
ysis task which requires a non-Gaussian data model has been adapted from [Siv96],
attributed to [Gul88]:

“A lighthouse is somewhere off a piece of straight coastline [of given length]
at a position lightx along the shore and a distance lighty out at sea. It
emits a series of short highly collimated flashes at random intervals and
hence at random azimuths. These pulses are intercepted on the coast by
photo-detectors [each at position xi] that record only the fact that a flash
has occurred, but not the angle from which it came. Nflashes have so far
been recorded at positions {x(i)}. Where is the lighthouse?”

Listing 8.6 captures this problem and synthesizes code to estimate the position of the
lighthouse.

82 Statistical Models — Examples

1 model l i gh thou s e as ’Lighthouse example [Sivia96] ’ .
2

3 const nat l ength as ’length of the shore ’ .
4 const nat n f l a s h e s as ’number of flashes ’ .
5

6 %
7 % Priors (hyperparameters & distribution)
8 %
9 double l i g h t x as ’x−position of the lighthouse ’ .

10 double l i g h t y as ’y−position of the lighthouse ’ .
11

12 l i g h t x ∼ uniform(− l ength /2 , l ength /2) .
13 l i g h t y ∼ uniform (0 , l ength /2) .
14

15 %
16 % Data
17 %
18 data double x (0 . . n f l a s h e s − 1) as ’x−positions of triggered sensors ’ .
19 x () ∼ cauchy (l i g h t x , l i g h t y) .
20

21 %
22 % Goal
23 %
24 max pr (x | { l i g h t x , l i g h t y }) for { l i g h t x , l i g h t y } .

Listing 8.6: Lighthouse example

8.1.6 Discrete

Typical examples with discrete probability distributions always include models of
tossed coins. Tossing one coin with a bias can be modelled using the Bernoulli dis-
tribution (Listing 8.7). A real-valued bias with values between 0 and 1 is defined to
describe the bias. Since the coin is tossed only once, the value of head can only be 0
or 1 (coin lands on head). This (somewhat degenerate) example obviously calculates
the value of head as 1 if bias ≥ 0.5 and 0 otherwise. This example shows that Auto-
Bayes can find simple closed-form solutions. Listing 8.8 shows the straight-forward
generalization to tossing a biased coin n times. Note that in both specifications, the
declaration of a scalar statistic variable (heads) and the definition of its pdf can be
done in one statement.

If the bias is not known, AutoBayes can estimate it using prior information. In this
case, a beta-distributed prior on the value of bias is used. Its parameters are a prior
on getting head or getting tails. Listing 8.9 shows the AutoBayes specification.

8.1 Introductory Examples 83

1 model b i a s ed co i n as ’Biased coin toss model ’ .
2

3 data double b ia s as ’ bias towards heads ’ .
4 where 1 > b ia s .
5 where 0 < b ia s .
6

7 nat heads ∼ bernoulli (b i a s) .
8 where 1 ≥ heads .
9 where 0 =< heads .

10 where heads in 0 . . 1 .
11

12 max pr (heads | b ia s) for heads .

Listing 8.7: AutoBayes model for tossing a biased coin.

1 model b i a s e d c o i n s as ’Biased coin toss model (multiple tosses) ’ .
2

3 const nat n as ’number of tosses ’ .
4

5 data double b ia s as ’ bias towards heads ’ .
6 where 1 > b ia s .
7 where 0 < b ia s .
8

9 % Head count
10 nat heads ∼ binomial (n , b i a s) .
11 where n ≥ heads .
12 where 0 =< heads .
13 where heads in 0 . . n .
14

15 max pr (heads | {n , b i a s }) for heads .

Listing 8.8: AutoBayes model for repeatedly tossing a biased coin.

1 model b i a s e d c o i n s p r i o r as ’Biased coin toss model with prior ’ .
2

3 const nat n as ’number of tosses ’ .
4

5 const nat p r i o r t a i l s as ’ prior count of tails ’ .
6 where 0 < p r i o r t a i l s .
7 const nat pr i o r head s as ’ prior count of heads ’ .
8 where 0 < pr i o r head s .
9

10 double b ia s as ’ bias towards heads ’ .
11 where 1 > b ia s .
12 where 0 < b ia s .
13

14 b ia s ∼ beta (p r i o r t a i l s , p r i o r h ead s) .
15

84 Statistical Models — Examples

16 nat heads ∼ binomial (n , b i a s) .
17 where n ≥ heads .
18 where 0 =< heads .
19 where heads in 0 . . n .
20

21 max pr ({ heads , b i a s }) for {heads , b i a s } .

Listing 8.9: AutoBayes model for tossing a biased coin with prior.

8.2 Clustering Examples

8.2.1 Mixture of Gaussians

The “mixture of Gaussians” [EH81] specification is a good example of how a straight-
forward and simple problem specification unfolds into a complex, iterative algorithm.
Listing 8.10 shows the specification of the problem: n points data points xi have been
generated by n classes different sources. The data from each source c are normal
distributed, i.e., xi ∼ N(µc, σ

2
c). All parameters of the model, i.e., µc, σc, and the

relative class frequency φc are unknown and must be determined.

1 model mog as ’Mixture of Gaussians ’ .
2

3 % Model parameters
4 const nat n po in t s as ’Number of data points ’ .
5 where 0 < n po in t s .
6 const nat n c l a s s e s as ’Number of classes ’ .
7 where 0 < n c l a s s e s .
8 where n c l a s s e s ≪ n po in t s .
9

10 % Class probabilities
11 double phi (0 . . n c l a s s e s −1) .
12 where 0 = sum(I := 0 . . n c l a s s e s −1, phi (I))−1.
13

14 % Class parameters
15 double mu(0 . . n c l a s s e s −1) .
16 double sigma (0 . . n c l a s s e s −1) .
17 where 0 < sigma () .
18

19 % Hidden variable
20 output nat c (0 . . n po ints −1) as ’ class assignment vector ’ .
21 c () ∼ discrete (vec to r (I := 0 . . n c l a s s e s −1, phi (I))) .
22

23 % Data
24 data double x (0 . . n po ints −1) .
25 x (I) ∼ gauss (mu(c (I)) , sigma (c (I))) .
26

8.2 Clustering Examples 85

27 max pr (x | { sigma , mu, phi }) for { sigma , mu, phi } .

Listing 8.10: AutoBayes model for a mixture of Gaussians.

The individual parts of the specification have already been described in Section 3.1 on
page 31. Since this example is relevant for a large number of AutoBayes problems,
the mathematical derivation and the assembly of the clustering algorithm will be
discussed in detail.

When AutoBayes processes this model, a number of internal steps are executed
by AutoBayes in order to solve this optimization task. In a first step, a Bayesian
Network (BN) for the problem is constructed. Figure 8.1 shows a graphical repre-
sentation of the resulting Bayesian Network. AutoBayes generates this graphical
representation whenever it is called with the -designdoc or -dot command flags.

n_points

n_classes n_classes

cx

discretegauss

musigma phi

Figure 8.1: Bayesian Network for Mixture of Gaussians. This graph has been auto-
generated by AutoBayes and had been visualized using GraphViz.

86 Statistical Models — Examples

Statistical variables are shown as vertices in this network, known (data) variables
as shaded ellipses. A hidden variable (in our case c) is displayed as a rectangle
with rounded edges. Since all variables are actually vectors, their dimension and i.i.d
status is shown with rectangles in the background, which are labeled with the variable
dimension. As usual, arrows mark the dependencies between the variables. From this
figure, it is obvious that the problem can be broken down into two subproblems, which
can be solved separately:

max pr(c | phi) for phi

max pr(x | {c, mu, sigma}) for {mu, sigma}

In its schema-base, AutoBayes contains a number of rules on how to partition and
simplify extended Bayesian Networks. Furthermore, AutoBayes recognizes that this
problem describes a discrete latent variable problem (often called a hidden variable
problem). In our case, the (known) data variable is x, the hidden variable the class
membership vector c.

With these two observations, AutoBayes can now start to solve the problem. Being
a hidden variable problem, the application of an instance of a discrete EM algorithm
[MK97] can solve this problem.

The model describes a discrete latent (or hidden) variable problem with the latent
variable c and the data variable x . The problem to optimize the conditional probabil-
ity P(x | µ, φ, σ) w.r.t. the variables µ, φ, and σ can thus be solved by an application
of the (discrete) EM-algorithm.

The algorithm defines and maintains as central data structure, a class membership
table q, such that qij is the probability that data point xi belongs to class j, i.e.,
qij = P([ci = j]).

The algorithm consists of an initialization phase for q (Section 8.2.1), followed by a
convergence phase, the EM loop, followed by the extraction of the hidden variable c.

Initialization of EM

The q matrix is of the size n points× n classes and must be initialized before the
EM-loop starts. A number of different initialization methods can be selected using
the pragma em:

center In this mode, a center-based initialization is attempted. This means that
for each class 0 ≤ j ≤ n classes − 1, a center-point is chosen randomly, i.e.,
ctj = xrnd

2. Then, all elements of q are initialized with the normalized distance

2Please note that this kind of initialization could result in data points could be picked more than

8.2 Clustering Examples 87

between the data value and the chosen point ctj. For 0 ≤ i ≤ n points− 1

qij =

√

(ctj − xi)2

∑n points−1

k=0

√

(ctj − xk)2

sharp class This initialization starts with a random assignment of the class vector
c, i.e., cj = rnd for 0 ≤ j ≤ n classes − 1. Then the q matrix is initialized
such that qici

= 1 and zero everywhere else (0 ≤ i ≤ n points− 1). This means
that the EM algorithm starts with a q matrix that is zero almost everywhere.

fuzzy class This initialization also starts with a random assignment of the class
vector c, i.e., cj = rnd for 0 ≤ j ≤ n classes − 1. Then, however, only a
portion δ of the probability is put into qici

, the rest is uniformly (but randomly)
distributed over the rest of the elements in q. In order to obey the constraint
that

∑

k qik = 1, the following algorithm is used:

qij =

1
n classes(1 − δ) × rnd j 6= ci

1 − ∑n classes−1
k=0,k 6=j qik j = ci

no pref This option lets AutoBayes select one of the initialization methods.

Note that there are many possibilities to initialize the q matrix. AutoBayes can be
easily extended by schemas to perform other kinds of initialization.

The EM Loop

The EM loop is the central optimization iteration of the algorithm. Each iteration is
comprised of two individual steps, the E-step and the M-step. The M-step maximizes
the probability expressions and estimates values for the unknown parameters µ, σ,
and φ. The E-step calculates the “expectation” and updates the q matrix. In contrast
to many other implementations, AutoBayes first starts with the M-step followed by
the E-step.

The iteration loop is executed until

(a) a given maximal number of iterations has been performed. This number is given
as an input parameter maxiteration to the generated code, OR

(b) if the iteration metric E is smaller than the given parameter tolerance.

once, potentially leading to numerical instability.

88 Statistical Models — Examples

In any of these two cases, the EM loop is terminated and the required parameters are
extracted and returned.

Although a number of different ways to calculate the “error” E could be used, Au-
toBayes currently supports two mechanisms.

• The error is calculated as the sum of the normalized differences between all
parameters of the current and the previous run. For run t, we have

E =
n classes−1

∑

j=0

|µt
j − µt−1

j |
|µt

j| + |µt−1
j |+

n classes−1
∑

j=0

|σt
j − σt−1

j |
|σt

j| + |σt−1
j |+

n classes−1
∑

j=0

|φt
j − φt−1

j |
|φt

j| + |φt−1
j |

• The normalized difference of the log-likelihood L between the current and the
previous run is taken, i.e.,

E =
|Lt − Lt−1|
|Lt| + |Lt−1|

This iteration metric can be activated by setting
-pragma em log likelihood convergence=true.

Although the effort in calculation of this metric is higher, the EM algorithm con-
verges usually much faster.

In the following, we present the autogenerated derivation of the M-step, as it contains
“the meat” of the problem.

begin autogenerated document
The problem to optimize the conditional probability P(c, x | µ, φ, σ) w.r.t. the vari-
ables µ, φ, and σ can under the given dependencies by Bayes rule be decomposed into
two independent subproblems:

maxP(c | φ) for φ

maxP(x | c, µ, σ) for µ, σ

The conditional probability P(c | φ) is under the dependencies given in the model
equivalent to

−1+n points
∏

i=0

P(ci |φ)

The probability occurring here is atomic and can thus be replaced by the respective
probability density function given in the model. Summing out the expected variable

8.2 Clustering Examples 89

cpv10 yields the log-likelihood function

∑i=0...−1+n points

j ∈ dom ci∼q(i ,j)
log

−1+n points
∏

k=0

φck

which can be simplified to

−1+n classes
∑

i=0

log φi

−1+n points
∑

j=0

q(j , i)

This function is then optimized w.r.t. the goal variable φ.

The expression

−1+n classes
∑

i=0

log φi

−1+n points
∑

j=0

q(j , i)

is maximized w.r.t. the variable φ under the constraint

0 = −1 +
−1+n classes

∑

i=0

φi

using the Lagrange-multiplier l.

The summand

l

is constant with respect to the goal variable φpv21 and can thus be ignored for maxi-
mization. The function

−1 l
−1+n classes

∑

i=0

φi +
−1+n classes

∑

i=0

log φi

−1+n points
∑

j=0

q(j , i)

is then symbolically maximized w.r.t. the goal variable φpv21 . The differential

−1 l + φ−1
pv21

−1+n points
∑

i=0

q(i , pv21)

is set to zero; this equation yields the solution

l−1

−1+n points
∑

i=0

q(i , pv21)

90 Statistical Models — Examples

The conditional probability P(x | c, µ, σ) is under the dependencies given in the model
equivalent to

−1+n points
∏

i=0

P(xi |ci , µ, σ)

The probability occurring here is atomic and can thus be replaced by the respective
probability density function given in the model. Summing out the expected variable
cpv10 yields the log-likelihood function

∑i=0...−1+n points

j ∈ dom ci∼q(i ,j)
log

−1+n points
∏

k=0

exp

−1

2
(xk − µck)

2

σ2
ck

1

σck

√
2 π

which can be simplified to

−1
−1+n classes

∑

i=0

log σi

−1+n points
∑

j=0

q(j , i) + −1

2
n points log 2 + −1

2
n points log π +

−1

2

−1+n classes
∑

i=0

σ−2
i

−1+n points
∑

j=0

(−1 µi + xj)
2 q(j , i)

This function is then optimized w.r.t. the goal variables µ and σ.

The summands

−1

2
n points log 2

−1

2
n points log π

are constant with respect to the goal variables µ and σ and can thus be ignored for
maximization.

Index decomposition: The function

−1
−1+n classes

∑

i=0

log σi

−1+n points
∑

j=0

q(j , i) + −1

2

−1+n classes
∑

i=0

σ−2
i

−1+n points
∑

j=0

(−1 µi + xj)
2 q(j , i)

can be optimized w.r.t. the variables µi and σi element by element (i.e., along the
index variable i) because there are no dependencies along that dimension.

8.2 Clustering Examples 91

The factor

n classes

is non-negative and constant with respect to the goal variables µpv31 and σpv31 and
can thus be ignored for maximization.

The function

−1 log σpv31

−1+n points
∑

i=0

q(i , pv31) + −1

2
σ−2

pv31

−1+n points
∑

i=0

(−1 µpv31 + xi)
2 q(i , pv31)

is then symbolically maximized w.r.t. the goal variables µpv31 and σpv31 . The partial
differentials

∂f

∂µpv31

= −1 µpv31 σ−2
pv31

−1+n points
∑

i=0

q(i , pv31) + σ−2
pv31

−1+n points
∑

i=0

xi q(i , pv31)

∂f

∂σpv31

= −1 σ−1
pv31

−1+n points
∑

i=0

q(i , pv31) + σ−3
pv31

−1+n points
∑

i=0

(−1 µpv31 + xi)
2 q(i , pv31)

are set to zero; these equations yield the solutions

µpv31 = cond(0 =

−1+n points
∑

i=0

q(i , pv31),

fail(division by zero),
−1+n points

∑

i=0

q(i , pv31)−1

−1+n points
∑

i=0

xi q(i , pv31))

σpv31 = cond(0 =

−1+n points
∑

i=0

q(i , pv31),

fail(division by zero),

1

2
4

1

2

−1+n points
∑

i=0

(−1 µpv31 + xi)
2 q(i , pv31)

1

2

−1+n points
∑

i=0

q(i , pv31)−
1

2)

end autogenerated document

Extracting the Hidden Variable

After the EM-loop has terminated, it has calculated the most likely values of the
(unknown) parameters µ, σ, φ, as well as the (internal) matrix q. If the most likely

92 Statistical Models — Examples

class assignment, the hidden variable c is desired, AutoBayes performs the following
calculation. For 0 ≤ i ≤ n points− 1

ci = argmaxj qij

The q matrix itself is returned using the pragma -pragma em q output=true. Please
note that the name of this internal matrix cannot be accessed from the AutoBayes
specification language.

8.2.2 Multivariate Mixture of Gaussians

Whenever data sets with more than one statistical variable needs to be clustered, a
multivariate mixture model has to be used. In AutoBayes, multivariate mixture
models can be specified in two ways:

• each individual variable is specified by its name; means and standard deviations
for each variable are returned separately

• all variables are packed into a 2-dimensional matrix. This matrix has the di-
mension: Ndimensions × Ndatapoints. AutoBayes then returns a matrix for the
means and standard deviation of size Ndimensions × Nclasses.

A typical example for multivariate clustering, the Iris data set, has been discussed
in detail in Section 3. There, we used the approach of packing the given data into a
matrix “data”.

All multivariate mixture models can have variants with respect to the independence of
the dimensions. In general, a multivariate Gaussian is defined as X ∼ N(µ, Σ) where
µ is a vector of the means, and Σ is a Ndimensions ×Ndimensions matrix, the covariance
matrix. Often, however, only the diagonal elements of the covariance matrix are of
interest, i.e., Σij = 0 for i 6= j. Please note that the current version of AutoBayes
cannot handle the case with full covariance, i.e., N(µ, Σ).

Listing 8.11 shows the AutoBayes specification of a multivariate mixture of Gaus-
sians. Its input is a data matrix sim data of the dimensions number of data points
times number of features (or variables). The goal of the specification is to estimate,
given the desired number of classes n classes, the most probable class assignment and
the class parameters (µ, σ2). This model is the basis model for clustering of software
simulation data as described in Section 1.2.1 and [GBSMB08].

Typically, this model is processed with the following flags and pragmas:

8.2 Clustering Examples 93

-instrument display and save the error value during each iteration of the EM al-
gorithm. The data can be used to monitor the convergence behavior of the
algorithm.

-pragma em log likelihood convergence=true This option forces the EM algo-
rithm to use the current log-likelihood as its convergence metric. The algorithm
stops, when the change in the log-likelihood becomes smaller than the given
threshold tolerance.

-pragma em=... selects the initialization routine for the EM algorithm as discussed
above in Section 8.2.1. By default, a center-based initialization is selected.

As with any iterative statistical or numerical algorithm, there are some possible
caveats, when AutoBayes is used on mixture models.

• The number of classes must be specified before the run of the EM algorithm.
This model thus does not estimate the most probable number of classes. How-
ever, with a simple MatlabTM/Octave script, which iterates over a range
of classes (e.g., 2:10) and monitoring of the returned log-likelihood, the best
number of classes can easily be estimated.

• If the given number of classes is larger than is prompted by the data, the al-
gorithm may return multiples of classes with identical parameters. The reason
is that the generated algorithm does not automatically reduce the number of
classes in case they become empty. Reducing the number of classes avoids this
problem.

• Numerical instability and return of ’NaN’ can occur if the range of values in a
data variable becomes too large. The reason is that internally, ratios of expres-
sions of the form ex−µ have to be formed for input data x. If the value of x− µ
becomes too large or to small, NaNs or division-by-zero exceptions can occur.

This problem can circumvented by normalizing the data prior to processing.
Typical ways to do this in MatlabTM/Octave using a data vector x is:

– xn = (x−min(x))
max(x)−min(x)

produces a 0-1 normalized data vector xn.

– xn = (x−µx)
σ2

x

produces a N(0, 1) normalized data vector xn.

1 model mul t c l u s t e r as

2 ’ simple multivariate clustering model ’ .
3

4 const nat n va r i a b l e s as ’Number of variables ’ .
5 const nat n po in t s as ’Number of data points ’ .
6

94 Statistical Models — Examples

7 const nat n c l a s s e s as ’Number of classes ’ .
8 where 0 < n c l a s s e s .
9 where n c l a s s e s ≪ n po in t s .

10

11

12 double phi (0 . . n c l a s s e s −1) as ’ class probabilities ’ .
13 where 0 = sum(I := 0 . . n c l a s s e s −1, phi (I))−1.
14

15 % Class parameters
16 double mu(0 . . n va r i ab l e s −1, 0 . . n c l a s s e s −1) .
17

18 double sigma (0 . . n va r i ab l e s −1, 0 . . n c l a s s e s −1) .
19 where 0 < sigma (,) .
20

21 output nat c l a s s a s s i gnment (0 . . n po ints −1) as ’hidden variable ’ .
22 c l a s s a s s i gnment () ∼ discrete (vec to r (I := 0 . . n c l a s s e s −1, phi (I))) .
23

24 data double s im data (0 . . n va r i ab l e s −1, 0 . . n po ints −1) .
25

26 s im data (C, I) ∼ gauss (mu(C, c l a s s a s s i gnment (I)) , sigma (C,
c l a s s a s s i gnment (I))) .

27

28 % Goal
29

30 max pr ({ s im data } | { phi , mu, sigma }) for { phi , mu, sigma } .

Listing 8.11: Multivariate clustering of Gaussians

8.2.3 Working with Priors

As with other statistical models (see Section 8.1.2), mixture models can have priors.
In this section, we will discuss how conjugate priors on the means and the standard
deviations for each class can be used within AutoBayes (for a one-dimensional
problem). Listing 8.12 shows the entire specification. Most of the specification is
similar to the standard one-dimensional mixture of Gaussians. The priors are defined
by the additional (known) variables (each variable is a vector over the classes): µ0

as the mean of the means, κ0 as confidence of µ0, and σ0 and δ0 as the prior for the
standard deviation. Then, the model parameters µ and σ2 are distributed as:

µ ∼ N(µ0, κ0σ
2)

and

σ2 ∼ Γ−1(1 +
δ0

2
,
1

2
σ0δ0)

The goal of the specification now looks different, namely

8.2 Clustering Examples 95

1 max pr ({mu, sigma sq , x} | phi) for {phi , mu, s igma sq } .

For comparison, the goal specification of the standard mixture model is

1 max pr (x | { phi , mu, sigma }) for {phi , mu, sigma } .

The internal, autogenerated derivation is now getting much more involved, as all the
information about the priors has to be taken into account. Below, we show the second
half of the derivation, namely for maximizing P (µ, σ2, x|c) under the independence
assumption, i.e., the class frequency (φ) has been factored out already.

begin autogenerated document
The conditional probability P(µ, σ2, x | c) is under the dependencies given in the
model equivalent to

−1+C
∏

i=0

P(µi |σ2
i)

−1+C
∏

i=0

P(σ2
i)

−1+N
∏

i=0

P(xi |ci , µ, σ2)

All probabilities occurring here are atomic and can thus be replaced by the respective
probability density functions given in the model. Summing out the expected variable
cpv11 yields the log-likelihood function

∑i=0...−1+N

j ∈ dom ci∼q(i ,j) log
∏−1+C

k=0 exp

−1

2
(µk − µ0)

2

(κ0 (σ2
k)

1

2)2

1

κ0 (σ2
k)

1

2

√
2 π

∏−1+C

k=0 exp

−

1

2
δ0 σ0

σ2
k

(σ2

k)
−(1+1+ 1

2
δ0)

(
1

2
δ0 σ0)

1+ 1

2
δ0

Γ(1 +
1

2
δ0)

∏−1+N

k=0 exp

−1

2
(xk − µck)

2

(σ2
ck

)
1

22

1√
2 π (σ2

ck
)

1

2

which can be simplified to

96 Statistical Models — Examples

−1C log κ0 + −1C log Γ(1 + 1
2
δ0)+

C log δ0 + C log σ0 + −5
2

∑−1+C

i=0 log σ2
i +

−3
2
C log 2 + −1

2
δ0 C log 2+

−1
2
δ0 σ0

∑−1+C

i=0 (σ2
i)

−1
+ −1

2
δ0

∑−1+C

i=0 log σ2
i + −1

2
C log π+

−1
2
N log 2 + −1

2
N log π + −1

2
κ−2

0

∑−1+C

i=0 (−1 µ0 + µi)
2 (σ2

i)
−1

+

−1
2

∑−1+C

i=0 log σ2
i

∑−1+N

j=0 q(j , i)+

−1
2

∑−1+C

i=0 (σ2
i)

−1 ∑−1+N

j=0 (−1 µi + xj)
2 q(j , i)+

1
2
δ0 C log δ0 + 1

2
δ0 C log σ0

This function is then optimized w.r.t. the goal variables µ and σ2.

The summands

−1C log κ0

−1C log Γ(1 +
1

2
δ0)

C log δ0

C log σ0

−3

2
C log 2

−1

2
δ0 C log 2

−1

2
C log π

−1

2
N log 2

−1

2
N log π

1

2
δ0 C log δ0

1

2
δ0 C log σ0

are constant with respect to the goal variables µ and σ2 and can thus be ignored for
maximization.

Index decomposition

The function

8.2 Clustering Examples 97

−5
2

∑−1+C

i=0 log σ2
i + −1

2
δ0 σ0

∑−1+C

i=0 (σ2
i)

−1
+

−1
2
δ0

∑−1+C

i=0 log σ2
i + −1

2
κ−2

0

∑−1+C

i=0 (−1 µ0 + µi)
2 (σ2

i)
−1

+

−1
2

∑−1+C

i=0 log σ2
i

∑−1+N

j=0 q(j , i)+

−1
2

∑−1+C

i=0 (σ2
i)

−1 ∑−1+N

j=0 (−1 µi + xj)
2 q(j , i)

can be optimized w.r.t. the variables µpv37 and σ2
pv37 element by element (i.e., along

the index variable pv37) because there are no dependencies along that dimension.

The function

−5 log σ2
pv37 + −1 δ0 σ0 (σ2

pv37)
−1

+ −1 δ0 log σ2
pv37 + −1 log σ2

pv37

∑−1+N

i=0 q(i , pv37)+

−1 κ−2
0 (−1 µ0 + µpv37)

2 (σ2
pv37)

−1
+ −1 (σ2

pv37)
−1 ∑−1+N

i=0 (−1 µpv37 + xi)
2 q(i , pv37)

is then symbolically maximized w.r.t. the goal variables µpv37 and σ2
pv37 . The partial

differentials

∂f

∂µpv37

= −2 µpv37 κ−2
0 (σ2

pv37)
−1

+ −2 µpv37 (σ2
pv37)

−1
−1+N
∑

i=0

q(i , pv37)

+2 µ0 κ−2
0 (σ2

pv37)
−1

+ 2 (σ2
pv37)

−1
−1+N
∑

i=0

xi q(i , pv37)

∂f

∂σ2
pv37

= −5 (σ2
pv37)

−1
+ −1 δ0 (σ2

pv37)
−1

+ −1 (σ2
pv37)

−1
−1+N
∑

i=0

q(i , pv37)

+ δ0 σ0 (σ2
pv37)

−2
+ κ−2

0 (−1 µ0 + µpv37)
2 (σ2

pv37)
−2

+ (σ2
pv37)

−2
−1+N
∑

i=0

(−1 µpv37 + xi)
2 q(i , pv37)

are set to zero; these equations yield the solutions

µpv37 = µ0 (1 + κ2
0

−1+N
∑

i=0

q(i , pv37))−1 + κ2
0 (1 + κ2

0

−1+N
∑

i=0

q(i , pv37))−1

−1+N
∑

i=0

xi q(i , pv37)

σ2
pv37 = δ0 σ0 (5 + δ0 +

−1+N
∑

i=0

q(i , pv37))−1 + κ−2
0 (5 + δ0

+
−1+N
∑

i=0

q(i , pv37))−1 (−1 µ0 + µpv37)
2 + (5 + δ0 +

−1+N
∑

i=0

q(i , pv37))−1

98 Statistical Models — Examples

×
−1+N
∑

i=0

(−1 µpv37 + xi)
2 q(i , pv37)

end autogenerated document

1 model mgp mu as ’Mixture of Gaussians (with priors) ’ .
2

3 const nat n po in t s as ’Number of data points ’ .
4 where 0 < n po in t s .
5

6 const nat n c l a s s e s as ’Number of classes ’ .
7 where 0 < n c l a s s e s .
8 where n c l a s s e s ≪ n po in t s .
9

10

11 double phi (0 . . n c l a s s e s −1) .
12 where 0 = sum(I := 0 . . n c l a s s e s −1, phi (I))−1.
13

14

15 const double mu 0 as ’ prior on mu’ .
16 const double kappa 0 as ’ prior on mu’ .
17 where 0 < kappa 0 .
18

19 double mu(0 . . n c l a s s e s −1) .
20 mu(I) ∼ gauss (mu 0 , sq r t (s igma sq (I)) ∗ kappa 0) .
21

22

23 const double s igma 0 as ’ prior on sigma sq ’ .
24 where 0 < s igma 0 .
25 const double de l t a 0 as ’ prior on sigma sq ’ .
26 where 0 < de l t a 0 .
27

28 double s igma sq (0 . . n c l a s s e s −1) ∼ invgamma(d e l t a 0 /2+1 , s igma 0 ∗(
d e l t a 0 /2)) .

29 where 0 < s igma sq () .
30

31

32 nat c (0 . . n po ints −1) as ’ class assignment vector ’ .
33

34 c () ∼ discrete (vec to r (I := 0 . . n c l a s s e s −1, phi (I))) .
35

36 data double x (0 . . n po ints −1) .
37

38 x (I) ∼ gauss (mu(c (I)) , s q r t (s igma sq (c (I)))) .
39

40 max pr ({mu, sigma sq , x} | phi) for {phi , mu, s igma sq } .

Listing 8.12: Mixture of Gaussians with priors.

8.2 Clustering Examples 99

8.2.4 Working with Non-Gaussian and Multiple Distributions

Until now, we only considered mixture models, where data were Gaussian distributed.
In many applications, this does not have to be the case. Typical examples include
discrete features with binomial distribution, or sensor readings with an exponential
distribution. In general, two cases can be distinguished:

• different distributions along the different data dimensions. Here, different data
sources have different distributions, but the distribution is the same for all drawn
data. An example is a two-dimensional data set of temperature (Gaussian dis-
tributed) and thermostat status (on/off, discrete binomial distribution).

• data points have a different distribution according to the data source (=class).
For example, a sensor returns data which is exponentially distributed. Back-
ground noise (from the same sensor), however, is Gaussian distributed. The
statistical model now is required to separate the “good” data from the back-
ground noise.

Both kinds of problems can be solved by AutoBayes, as we show in the following
sections.

Non-Gaussian mixtures

The specification of a mixture model for non-Gaussian distributions looks very sim-
ilar to one for Gaussian distribution (Listing 8.10). Only the line, specifying the
distribution of the data has to be modified and, of course, the names and numbers of
distribution parameters has to modified accordingly. Table 8.1 shows a list of available
(and tested) distributions available. Please note that for some distributions, no closed
form solution for the M step exists or can be found by the symbolic system. In these
cases, a numerical optimization routine (usually a Nelder-Mead Simplex Algorithm)
is instantiated. Other distributions, most notably the von Mises-Fisher distribution
requires additional “help” to find a closed form solution. These expressions are given
in the input specification, as Listing 8.13 shows. This hint to solution is taken from
a published paper [BaJGS05], where this result is a major result of the paper.

1 . . .
2 data double x (0 . . n dim −1 ,0 . . n po ints −1) .
3 x (J , I) ∼ vonmises (n dim , mu(J , c (I)) , k (c (I))) .
4

5 %−−
6 a s s e r t (synth formula ([k (I) , mu(,)] , Formula , Constraint ,
7 block (
8 l o c a l ([
9 s c a l a r (PV1, double , []) ,

100 Statistical Models — Examples

Name Notation Closed Form Remarks

Bernoulli x ∼ bernoulli(p) Y
Beta x ∼ beta(α, β) N 1

Binomial x ∼ binomial(n, p) Y 2

Cauchy x ∼ cauchy(x, y) N 1

Exponential x ∼ exp(λ) Y
Gamma x ∼ gamma(k, θ) Y k known
Gamma x ∼ gamma(k, θ) N 1

Gauss x ∼ gauss(µ, σ2) Y
Poisson x ∼ poisson(λ) Y
vonMises x ∼ vonmises(µ, k) Y 3

Weibull x ∼ weibull(α, β) N 1

Table 8.1: Different distributions for mixture models. For some distributions, closed-
form solutions are found by AutoBayes, for others not. 1 AutoBayes has to be
called with -pragma schema control arbitrary init values=true to obtain iter-
ative solution. 2 PATCHED version of AutoBayes necessary. 3 solution requires
customized schema (see text). 4 semi-supported in alpha version.

10 s c a l a r (PV2, double , []) ,
11 s c a l a r (R, double , []) ,
12 s c a l a r (I1 , int , []) ,
13 s c a l a r (I2 , int , []) ,
14 vec to r (V, double , [dim (0 , n dim − 1)] , [])
15]) ,
16

17 s e r i e s ([
18 a s s i gn (PV1, 0 , []) ,
19 for ([idx (I1 , 0 , n dim − 1)] ,
20 s e r i e s ([
21 a s s i gn (s e l e c t (V, [I1]) , 0 , []) ,
22 for ([idx (I2 , 0 , n po in t s − 1)] ,
23 a s s i g n p l u s (s e l e c t (V, [I1]) ,
24 ∗ ([q (I2 , I) , x (I1 , I2)]) , []) ,
25 []) ,
26 a s s i g n p l u s (PV1, ∗ ([s e l e c t (V, [I1]) , s e l e c t (V, [I1])

]) , [])
27] , []) ,
28 []) ,
29 a s s i gn (PV1, sq r t (PV1) , []) ,
30 a s s i gn (PV2, 0 , []) ,
31 for ([idx (I1 , 0 , n po in t s − 1)] ,
32 a s s i g n p l u s (PV2, q (I1 , I) , []) ,

8.2 Clustering Examples 101

33 []) ,
34 for ([idx (I1 , 0 , n dim − 1)] ,
35 a s s i gn (s e l e c t (mu, [I1 , I]) , s e l e c t (V, [I1]) / PV1, []) ,
36 []) ,
37 a s s i gn (R, ∗ ([PV1, PV2 ∗∗ (−1)]) , []) ,
38 a s s i gn (s e l e c t (k , [I]) ,
39 ((∗ ([R, n dim]) − ∗ ([R, R, R])) /
40 (1 − ∗ ([R, R]))) , [
41 comment ([’Approximation of k according to ’ ,
42 ’ [Banerjeeetal03] . ’])])
43] , []) , [
44 comment ([’Optimization of the expression ’ ,
45 expr (Formula) , pp nl ,
46 ’under the constraints ’ , expr (Const ra int s) ,
47 ’has been given explicitely in the specification . ’ ,
48 ’For a detailed derivation of this solution see ’ ,
49 ’ [Banerjee et al 2003]. A (recursive) approximation ’ ,
50 ’for k i s used : ’ ,
51 expr (k i = (r ∗n − r ∗ r ∗ r) /(1− r ∗ r))
52])
53]
54)
55)) .

Listing 8.13: Expressions to support vonMises-Fisher distributions.

Mixture of Distributions along Variables

Using different distributions along the different variables can be specified in Auto-
Bayes in a straight-forward way. Different variable names are used for the different
distributions as in the following specification snippet

1 data x g (I) ∼ gauss (mu(c (I)) , s q r t (s igma sq (c (I))) .
2 data x e (I) ∼ exponential (lambda (c (I))) .
3 . . .

Then the goal statement looks like
max pr({x g,x e}|{phi,mu,sigma,lambda} for {phi,mu,sigma,lambda}.

A typical example, where this kind of models is necessary, when the data set consists
of measurements from different sensors: some of the measurements are Gaussian dis-
tributed (e.g., pressure), whereas others are discrete, e.g., valve-open, switch-position.
For example, for a rocket the current thrust might be Gaussian distributed, whereas
the boolean flag “motor on/off” is certainly not. In many cases, a boolean variable (or
a discrete variable in general) can be modelled as a Gaussian by adding Gaussian noise

102 Statistical Models — Examples

to it: xab(I) = x(I) + normalrnd(0, σ
2
noise). A more concise and correct specification,

however, would directly define the input data vector x using a binomial distribution,
where the probability p is unknown and different for each class c:

1 x (I) ∼ binomial (1 , p (c (I))) .

Mixture of Distributions along Classes

For this specification variant the AutoBayes construct cases is used. The follow-
ing specification snippet shows the central part of a mixture of beta and Gaussian
distributed data. The full specification is shown in Listing 8.14.

1 data nat x (0 . . n po ints −1) .
2

3 x (I) ∼ mixture (c (I) cases

4 [0 −> beta (a , b) ,
5 1 −> gauss (mu, sigma)
6]) .

In this example, we have two classes. Data belonging to Class 1 are Beta distributed
with parameters a and b and those, belonging to Class 2 are Gaussian distributed.
Please note that for this specification, set the pragma schema control arbitrary init values

to true in order to allow AutoBayes to produce a numerical solution.

1 model mix beta gauss as ’Disjoint Mixture between Beta and Gaussian ’ .
2

3 const nat n po in t s as ’Number of data points ’ .
4 where 0 < n po in t s .
5

6 % Mixing proportions
7 double phi .
8 where 0 < phi .
9 where phi < 1 .

10

11 % Parameters
12 double a .
13 where 0 < a .
14 double b .
15 where 0 < b .
16

17 double mu.
18 double sigma .
19 where 0 < sigma .
20

21 % Hidden variable
22 nat c (0 . . n po ints −1) ∼ bernoulli (phi) as ’ class assignment vector ’ .

8.2 Clustering Examples 103

23

24

25 % Data
26 data nat x (0 . . n po ints −1) .
27

28 x (I) ∼ mixture (c (I) cases

29 [0 −> beta (a , b) ,
30 1 −> gauss (mu, sigma)
31]) .
32 where 0 =< x () .
33

34 % Goal
35

36 max pr (x | {mu, sigma , a , b , phi }) for {mu, sigma , a , b , phi } .

Listing 8.14: Mixture of Betas (Class 0) and Gaussians (Class 1).

8.2.5 Multinomial Principal Components Analysis (MPCA)

This is a k-means version of the algorithm, without sparse vectors. For details
see [BFG03].

1 model mpca as ’Multinomial Principle Component Analysis (PCA) ’ .
2

3 const nat n po in t s as ’Number of points ’ .
4 where 0 < n po in t s .
5 const nat n c l a s s e s as ’Number of classes ’ .
6 where 0 < n c l a s s e s .
7 where n c l a s s e s ≪ n po in t s .
8 const nat n f e a t s as ’Number of words in each document ’ .
9 where 0 < n f e a t s .

10 const nat n words as ’Number of distinct words ’ .
11 where 0 < n words .
12

13 const double alpha (0 . . n c l a s s e s −1) as ’ dirichlet parameters ’ .
14

15 %
16 % parameters : distribution over words
17 %
18 double omega (0 . . n c l a s s e s −1 ,0 . . n words−1) .
19 where 0 =< omega (,) .
20 where 1 = sum(J := 0 . . n words−1,omega (, J)) .
21

22 %
23 % hidden variable m the topic proportions
24 %
25 double m(0 . . n po ints −1 ,0 . . n c l a s s e s −1) .

104 Statistical Models — Examples

26 where 0 =< m(,) .
27 where 1 = sum(J := 0 . . n c l a s s e s −1,m(, J)) .
28

29 %
30 % hidden variable k the assigned topic for each word
31 %
32 nat k (0 . . n po ints −1 ,0 . . n f e a t s −1) .
33 where 0 =< k (,) .
34 where k (,) < n c l a s s e s .
35

36 k (I ,) ∼ discrete (vec to r (J := 0 . . n c l a s s e s −1,m(I , J))) .
37

38 %
39 % data
40 %
41 data double x (0 . . n po ints −1 ,0 . . n f e a t s −1) .
42 where 0 =< x (,) .
43 where x (,) < n words − 1 .
44

45 x (I , J) ∼ discrete (vec to r (K := 0 . . n words−1,omega (k (I , J) ,K))) .
46

47 max pr ({x } |{m, omega}) for {m, omega } .

Listing 8.15: AutoBayes model for MCPA

8.3 Time Series Analysis 105

8.3 Time Series Analysis

The models discussed so far, are time independent. In nature and engineering, how-
ever, many statistical processes are time series. This means they are of the form
xt0 , . . . , xt, xt+∆t, . . ., where t is the time, which is incremented in discrete steps of ∆t.
Please note that there are many different kinds of time series. Here, we only discuss
discrete time series.

Typical examples for discrete time series are sequences of events, or sequences of
(noisy) sensor measurements made at a certain sampling rate. Typical data analy-
sis problems are concerned with the detection of basic model parameters (and their
change over time).

Although the underlying mechanism of Bayesian Networks (BN) is very powerful
to handle time series data, AutoBayes’s capabilities in handling of such data is
currently fairly restricted. The following sections illustrate which analyses on time
series can be performed with AutoBayes.

The most striking restriction for AutoBayes is that all data have to be processed in
batch mode, i.e., all data xt0 , . . . , xt, . . . , xN must be presented to the generated code
as one vector of data. In contrast, recursive algorithms can process each data value xt

individually at a given time. Thus, recursive data analysis algorithms are much more
amenable to processing streaming data, i.e., data coming in at a specific rate.

8.3.1 Random Walk

A simple random walk can be described by the following equations:

x0 = 0

xt = xt−1 + η for t > 0

For a standard random walk, η is Gaussian distributed as η ∼ N(0, σ2). A biased
random walk is described by a similar set of equations. However, a noisy drift factor
pushes the values of xt toward a specific “direction”. We have

x0 = 0

xt = xt−1 + b + ν for t > 0

where b is the bias and ν ∼ N(0, σ2).

With this information, we can construct the AutoBayes model shown in Listing 8.16.
In this model, a random walk with n points data points is processed. The aim of the

106 Statistical Models — Examples

model is to estimate the drift drift rate and the noise drift error given the data drift .
Thus the goal of the specification is given as

1 max pr ({ d r i f t } | { d r i f t r a t e , d r i f t e r r o r })
2 for { d r i f t r a t e , d r i f t e r r o r } .

The distribution of the data is specified exactly as shown in the equations above. Here,
the cond keyword is used to distinguish the first data element from the subsequent
ones.

1 d r i f t (I) ∼ gauss (cond(I>0 , d r i f t (I−1) ,0)+d r i f t r a t e , d r i f t e r r o r) .

1 model walk as ’ simple random walk with bias ’ .
2

3 const nat n po in t s .
4 where 0 < n po in t s .
5 where n po in t s > 1 .
6

7 % parameters
8 double d r i f t r a t e as ’rate of drift per time splice ’ .
9 double d r i f t e r r o r as ’standard deviation of drift per time slice ’ .

10 where d r i f t e r r o r > 0 .
11

12 % distribution
13 data double d r i f t (0 . . n po ints −1) as ’ drift or gyro angular error ’ .
14 d r i f t (I) ∼ gauss (cond(I>0 , d r i f t (I−1) ,0)+d r i f t r a t e , d r i f t e r r o r) .
15

16

17 max pr ({ d r i f t } | { d r i f t r a t e , d r i f t e r r o r })
18 for { d r i f t r a t e , d r i f t e r r o r } .

Listing 8.16: AutoBayes model for a biased random walk.

8.3.2 Change Point Detection

An important task in the analysis of time series is the detection of an abrupt change.
Here, the most probable index t, 0 ≤ t < N is estimated where a change occurs.
Classical examples include accident rates in coal mining, which changes abruptly
after a new safety measure has been introduced, or estimating the point in time when
sensor readings go bad.

Listing 8.17 shows the AutoBayes specification (adapted from [OF96]) to detect the
most probable change point. Here the process is described by

xt =

{

N(µ1, σ
2) for t < tsw

N(µ2, σ
2) for t ≥ tsw

8.3 Time Series Analysis 107

In this simple model, the (unknown) noise remains constant over the change.

1 model h inck l ey as ’Gaussian change point analysis ’ .
2

3 const nat n po in t s .
4 where 0 < n po in t s .
5

6 nat switchpt .
7 where switchpt in 1 . . n po ints −2.
8 %
9 % The following constraint are implied by the range constraint but

not
10 % yet inferred . . .
11 %
12 where 0 < switchpt .
13 where switchpt < n po in t s − 1 .
14 where switchpt < n po in t s .
15

16 double mu1 .
17 double mu2 .
18

19 double s igma sq .
20 where 0 < s igma sq .
21

22 data double x (0 . . n po ints −1) .
23

24 x (I) ∼ gauss (cond(I < switchpt , mu1 , mu2) , s q r t (s igma sq)) .
25

26 max pr (x | {mu1, mu2 , sigma sq , switchpt }) for {mu1, mu2 , sigma sq ,
switchpt } .

Listing 8.17: AutoBayes model for a simple detection of a change point

Of course, variations of this change-point detection model can be specified. In the
following, we will just mention some ideas and leave the exact specification as an
exercise for the reader.

Instead of a change in the mean value µ, the noise characteristics σ2 can change
abruptly. This can be the case if a sensor suddenly produces a large amount of noise
(e.g., due to a broken cable or damaged amplifier. Then, we have

xt =

{

N(µ, σ2
1) for t < tsw

N(µ, σ2
2) for t ≥ tsw

Also, the detection of a change-point from a constantly growing value to a constant
value can be specified easily. A practical example for such a specification is the

108 Statistical Models — Examples

detection of the CAS-mach transition in aircraft trajectory (Chapter 1.2.2). Here, the
values of the data stream are growing with a constant (but unknown) rate xr, until it
switches over to a constant (again unknown) value xc. The mathematical formulation
for this problem is (assuming the noise σ2 is constant and known).

xt =

{

N(xc + xr(t − tsw), σ2) for t < tsw
N(xc, σ

2) for t ≥ tsw

A full specification of this problem will be given in the next section, where we will
discuss finding the most probable change point in two statistical process variables.

8.3.3 Change Points in Multiple Variables

The detection of CAS-mach transition as discussed in Chapter 1.2.2 calls for a monitor-
ing of two variables: the calibrated air speed (CAS) and the mach number. Listing 1.3
on page 19 shows how these variables develop, when the aircraft is climbing: before
the change point t0, the aircraft climbs with a constant (but noisy) airspeed cas0.
Due to the physics of the atmosphere, at the same time, the mach number increases
linearly with an unknown rate machr. After the aircraft passed the (unknown) tran-
sition point t0, the mach number will remain constant mach0 and the airspeed will
decrease linearly. We obtain the two formulas:

cast =

{

cas0 for t ≤ t0
cas0 − casr(t − t0) for t > t0

macht =

{

mach0 − machr(t − t0) for t ≤ t0
mach0 for t > t0

In order to obtain the most likely unknown parameters, we have to optimize for all
parameters simultaneously by

max Pr(〈cast,macht〉|mach0,machr, cas0, casr)

Listing 8.18 shows the full specification for this problem.

1 model c l imb t r a n s i t i o n as ’MAC−>CAS transition for climb scenarios ’ .
2

3 const nat n po in t s .
4 where 0 < n po in t s .
5

6 nat t 0 .
7 where t 0 < n po in t s − 1 .
8 where 2 < t 0 .

8.3 Time Series Analysis 109

9 where t 0 in 3 . . n po ints −3.
10

11 double mach 0 .
12 double mach r .
13 double ca s 0 .
14 double c a s r .
15

16 const double s igma sq .
17 where 0 < s igma sq .
18

19 data double mach (0 . . n po ints −1) .
20 data double cas (0 . . n po ints −1) .
21

22 mach(I) ∼ gauss (
23 cond(I < t 0 ,
24 mach 0 − (I−t 0) ∗mach r ,
25 mach 0
26) ,
27 s q r t (s igma sq)) .
28 cas (I) ∼ gauss (
29 cond(I < t 0 ,
30 cas 0 ,
31 ca s 0 − (I−t 0) ∗ c a s r
32) ,
33 s q r t (s igma sq)) .
34

35 max pr ({mach , cas } |{mach r , mach 0 , cas 0 , ca s r , t 0 })
36 for {mach 0 , mach r , cas 0 , ca s r , t 0 } .

Listing 8.18: AutoBayes specification for the detection of the CAS-mach transition

The heart of the algorithm, which is generated by AutoBayes is code for solving
a large and complicated quadratic equation. By abbreviating subexpressions, which
occur more than once, the code can be kept compact. If additional information about
the unknown parameters are known, we can add prior information to the specification.
Listing 8.19 shows that only few lines of the specification have to be added. Basically,
we specify that the unknown parameters casr and machr are Gaussian distributed
around some known mean µmachr

, µcasr
and a certain confidence κmachr

, κcasr
.

1 model c l imb t r a n s i t i o n p r i o r as

2 ’MAC−>CAS transition for climb scenarios with priors ’ .
3

4 const nat n po in t s .
5 where 0 < n po in t s .
6

7 nat t 0 .
8 where t 0 < n po in t s − 1 .

110 Statistical Models — Examples

9 where 2 < t 0 .
10 where t 0 < n po in t s .
11 where t 0 in 3 . . n po ints −3.
12

13 double mach 0 .
14 double mach r .
15 const double mu mach r .
16 const double kappa mach r .
17 where 0 < kappa mach r .
18

19 mach r ∼ gauss (mu mach r , s q r t (s igma sq) ∗kappa mach r) .
20

21 double ca s 0 .
22 double c a s r .
23 const double mu cas r .
24 const double kappa cas r .
25 where 0 < kappa mach r .
26

27 c a s r ∼ gauss (mu cas r , s q r t (s igma sq) ∗ kappa cas r) .
28

29 const double s igma sq .
30 where 0 < s igma sq .
31

32 data double mach (0 . . n po ints −1) .
33 data double cas (0 . . n po ints −1) .
34

35 mach(I) ∼ gauss (
36 cond(I < t 0 ,
37 mach 0 − (I−t 0) ∗mach r ,
38 mach 0
39) ,
40 s q r t (s igma sq)) .
41 cas (I) ∼ gauss (
42 cond(I < t 0 ,
43 cas 0 ,
44 ca s 0 − (I−t 0) ∗ c a s r
45) ,
46 s q r t (s igma sq)) .
47

48 max pr ({mach , cas , mach r , c a s r } |{mach c , cas c , sw i t ch pt })
49 for {mach c , mach r , cas c , ca s r , sw i t ch pt } .

Listing 8.19: Specification for the detection of the CAS-mach transition with priors

8.3 Time Series Analysis 111

8.3.4 Kalman Filters

Kalman filters are recursive least-square algorithms for the estimation of a process
state, given a noisy process model and noisy measurements [GA01, BH97]. The auto-
matic generation of code for Kalman filters is the domain of AutoFilter [TOMS04].
However, simple variants of Kalman filters can be easily specified using AutoBayes.
One restriction, however, should be noted: traditionally, Kalman filter algorithms
work on-line, i.e., they process one measurement or temporal update step at at time.
AutoBayes can only generate batch-mode filters, where all data of the time series
is present at the same time (given as a vector to the algorithm).

1 model kalman as ’ Simplest possible Kalman filter ’ .
2

3 const nat n po in t s .
4 where 0 < n po in t s .
5

6 data double l i k e l i h o o d .
7

8 double d r i f t (0 . . n po ints −1) as ’ drift ’ .
9 d r i f t (I) ∼ gauss (cond(I>0 , d r i f t (I−1) , 0) ,

10 cond(I>0 , 2 . 0 , 1 . 0)) .
11

12 % quantity being predicted , the ‘ ‘next” point
13 double d r i f t n e x t as ‘ f u tu r e d r i f t ’ .
14 drift next ∼ gauss(drift(n points−1) , 1.0) .
15

16 const double meas error as ’ std . dev . o f measurement ’ .
17

18 % Gaussian observation (measurement)
19 data double meas (0 . . n points−1) as ’measurement ’ .
20 meas(I) ∼ gauss(drift(I) , meas error) .
21

22 % quantity being predicted
23 double meas next as ’ f u tu r e measurement ’ .
24 meas next ∼ gauss(meas(n points−1) , meas error) .
25

26 max pr({ drift next , meas next , drift } | { meas })
27 for { drift next , meas next , drift } .

Listing 8.20: AutoBayes model for a simple Kalman filter.

Listing 8.20 shows a specification for an extremely simple Kalman filter to estimate
the drift rate of a gyro, for example. The drift is defined as a Gaussian random walk
(vector), here just with constant σ2 of 1 and 2. Note the usage of cond to specify
the recursive equation. The estimation of the next drift value in time drift next is
again Gaussian distributed, as well as the measurements. All unknown parameters,

112 Statistical Models — Examples

the estimated sequence of the drift values as well as the estimated next drift and
next measurement, are calculated, given the sequence of measurements in form of a
matrix. Please note, that AutoBayes does not generate online recursive algorithms
for Kalman filters.

8.3.5 Kalman Filters with Failure modes

A Kalman filter can also detect if and when sensors (or combination of sensors) fail,
even if this failure is not directly observable. Listing 8.21 shows a somewhat compli-
cated example of an aircraft sensor suite consisting of a directional and a pitch gyro
as well as a turn indicator. The AutoBayes specification estimates the next states
of the system and the most likely failure points for the individual sensors.

1 model dgtc as ’ directional and pitch gyro plus turn coordinator model ’
.

2

3 const nat n po in t s .
4 where 0 < n po in t s .
5

6 data double l i k e l i h o o d .
7

8 % DIRGYRO FAILURE PT = change point for direct . gyro failing
9 % parameters

10 const double d i r g y r o f a i l u r e p r o b as ’ probability of failure of dir .
gyro ’ .

11 d i r g y r o f a i l u r e p r o b := 0 . 5 .
12 nat d i r g y r o f a i l u r e p t .
13 where d i r g y r o f a i l u r e p t in 1 . . n po in t s .
14 where d i r g y r o f a i l u r e p t < n po in t s +1.
15 where 0<d i r g y r o f a i l u r e p t .
16 d i r g y r o f a i l u r e p t ∼ discrete (vec to r (I := 1 . . n po ints ,
17 cond(I<n points , d i r g y r o f a i l u r e p r o b /(n po ints −1) ,
18 1.0− d i r g y r o f a i l u r e p r o b))) .
19

20 % TC FAILURE PT = change point for turn coordinator failing
21 % parameters
22 const double t c f a i l u r e p r o b as ’ probability of failure of turn

coordinator ’ .
23 t c f a i l u r e p r o b := 0 . 5 .
24 nat t c f a i l u r e p t .
25 where t c f a i l u r e p t in 1 . . n po in t s .
26 where t c f a i l u r e p t < n po in t s +1.
27 where 0<t c f a i l u r e p t .
28 t c f a i l u r e p t ∼ discrete (vec to r (I := 1 . . n po ints ,
29 cond(I<n points , t c f a i l u r e p r o b /(n po ints −1) ,1.0−

t c f a i l u r e p r o b))) .

8.3 Time Series Analysis 113

30

31

32 % ELECT FAILURE PT = change point for electrical failing
33 % parameters
34 const double e l e c t f a i l u r e p r o b as ’ probability of failure of

electrical ’ .
35 e l e c t f a i l u r e p r o b := 0 . 5 .
36 data nat e l e c t f a i l u r e p t .
37 where e l e c t f a i l u r e p t in 1 . . n po in t s .
38 where e l e c t f a i l u r e p t < n po in t s +1.
39 where 0 < e l e c t f a i l u r e p t .
40 e l e c t f a i l u r e p t ∼ discrete (vec to r (I := 1 . . n po ints ,
41 cond(I<n points , e l e c t f a i l u r e p r o b /(n po ints −1) ,
42 1.0− e l e c t f a i l u r e p r o b))) .
43

44 % DRIFT = biased random walk for both direct . and pitch gyros
45 % parameters , including the base case
46 const double d r i f t r a t e as ’rate of drift per time slice ’ .
47 d r i f t r a t e := 0 . 1 .
48 const double d r i f t e r r o r as ’standard deviation of drift per time

slice ’ .
49 where d r i f t e r r o r > 0 .
50 d r i f t e r r o r := 1 . 0 .
51 const double d r i f t b a s e as ’ drift initialization ’ .
52 d r i f t b a s e := 0 .
53 const double d r i f t x b a s e e r r o r as ’ drift initialization of standard

error ’ .
54 d r i f t x b a s e e r r o r := d r i f t e r r o r ∗2 .
55

56 % distribution with base case and recursive case
57 % explicitly defined using cond()
58 double d i r d r i f t (0 . . n po ints −1) as ’ drift or dirgyro angular error ’ .
59 d i r d r i f t (I) ∼ gauss (cond(I>0 , d i r d r i f t (I−1) , d r i f t b a s e)+d r i f t r a t e ,
60 cond(I>0 , d r i f t e r r o r , d r i f t x b a s e e r r o r)) .
61

62 % quantity being predicted , the ”next” point
63 double d i r d r i f t n e x t as ’future dirdrift ’ .
64 d i r d r i f t n e x t ∼ gauss (d i r d r i f t (n po ints −1)+d r i f t r a t e , d r i f t e r r o r) .
65

66

67 % ANGLEDIFF = difference of ANGLE
68 % distribution
69 double a n g l e d i f f (0 . . n po ints −1) as ’angle ’ .
70 a n g l e d i f f (I) ∼ gauss (cond(I>0 , a n g l e d i f f (I−1) ,0) , 0 . 02) .
71

72 % quantity being predicted
73 double a n g l e d i f f n e x t as ’future angle difference ’ .
74 a n g l e d i f f n e x t ∼ gauss (a n g l e d i f f (n po ints −1) , 0 . 02) .

114 Statistical Models — Examples

75

76

77 % ANGLE = unbiased random walk
78 % distribution
79 double ang le (0 . . n po ints −1) as ’angle ’ .
80 ang le (I) ∼ gauss (cond(I>0 , ang le (I−1)+a n g l e d i f f (I−1) ,0) , 0 . 01) .
81

82 % quantity being predicted
83 double ang l e next as ’future angle ’ .
84 ang l e next ∼ gauss (ang le (n po ints −1)+a n g l e d i f f (n po ints −1) , 0 . 01) .
85

86

87 % DIRGYRO = gaussian conditioned on angle and dirdrift ;
88 % failure causes the dirgyro to be stuck at last good data
89

90 const double gy r o e r r o r as ’error rate for gyros ’ .
91 gy r o e r r o r := 0 . 1 .
92

93 const double t c e r r o r as ’error rate for turn coordinator ’ .
94

95 data double d i rgyro (0 . . n po ints −1) as ’ directional gyro measurement ’ .
96 d i rgyro (I) ∼ gauss (cond(and ([I<d i r g y r o f a i l u r e p t]) ,
97 ang le (I)+d i r d r i f t (I) ,
98 ang le (d i r g y r o f a i l u r e p t −1)+d i r d r i f t (

d i r g y r o f a i l u r e p t −1)
99) ,

100 gy r o e r r o r) .
101

102

103 % TURNCOORD = gaussian conditioned on anglediff
104

105 data double turn coord (0 . . n po ints −1) as

106 ’turn coordinator − rate of change of bank ’ .
107

108 turn coord (I) ∼ gauss (cond(and ([I<t c f a i l u r e p t , I<e l e c t f a i l u r e p t]) ,
109 a n g l e d i f f (I) ,
110 0) ,
111 t c e r r o r) .
112

113 max pr ({ d i r g y r o f a i l u r e p t , t c f a i l u r e p t ,
114 dirgyro , turn coord , ang le next , d i r d r i f t n e x t ,

a n g l e d i f f n e x t } |
115 { e l e c t f a i l u r e p t })
116 for { ang le next , d i r d r i f t n e x t , a n g l e d i f f n e x t ,

d i r g y r o f a i l u r e p t ,
117 t c f a i l u r e p t } .

Listing 8.21: AutoBayes model for a Kalman filter with sensor failures.

8.4 Reliability Models 115

8.4 Reliability Models

Statistical models in software engineering can be used to model failure rates, mean-
time-between-failure, and reliability of a piece of software. The models described in
this section comprise the standard models found in the literature. The AutoBayes
models have been developed by B. Fischer.

Listing 8.22 shows the specification for the basic Jelinski/Moranda (a.k.a., de-eutro-
phication) model [JM72]. In this model, the elapsed time between failures is modeled
by an exponential distribution; the hazard rate is assumed to be proportional to the
number of errors remaining in the software and to be constant between two consecutive
failures. The Jelinski/Moranda model is thus a finite failure, concatenated failure rate
model.

The error repair process is modeled as immediate and perfect, i.e., after each failure
the responsible error is identified and repaired and testing resumes only after the
repair, and attempts to repair an error are always successful and do not introduce
new errors.

Listing 8.22 is a close transcription of the original model, only the parameter loc as
number of lines of code has been added. Its purpose is to limit the number of errors
(to be less than the number of lines in the code).

Listing 8.23 is a Jelinski-Moranda model with conjugate priors as described in [MS83].

The Goel-Okumoto model ([GO78], Listing 8.24) modifies the basic Jelinski-Moranda
model by introducing a parameter p for the error repair rate, i.e., the probability that
a detected error is successfully repaired. This relaxes the “perfect repair” assumption
of Jelinski-Moranda; however, the assumption that no new bugs are introduced during
repair still holds. Obviously, for p = 1, the Jelinski-Moranda model appears as special
case of the Goel-Okumoto model.

1 model jm as ’ (Basic) Jelinski−Moranda model ’ .
2

3 const nat l o c as ’ lines of code ’ .
4 where n < l o c .
5

6 double n e r r o r as ’ in it ial number of errors ’ .
7 where n =< n e r r o r .
8 where n e r r o r =< l o c .
9

10 double c as ’fault detection rate ’ .
11 where 0 < c .
12

13 % Observation and distribution

116 Statistical Models — Examples

14 const nat n as ’number of observations ’ .
15 where 0 < n .
16

17 data double x (0 . . n−1) as ’ interfailure times (elapsed time between
errors) ’ .

18 where 0 < x (I) .
19

20 x (I) ∼ exponential (c ∗ (n e r r o r − I)) .
21

22 max pr (x | { n er ro r , c }) for { n er ro r , c } .

Listing 8.22: Jelinski-Moranda software reliability model

1 model ms as ’ Jelinski−Moranda model with conjugate priors ’ .
2

3 double n e r r o r as ’ in it ial number of errors ’ .
4 where n =< n e r r o r .
5 where n e r r o r =< l o c .
6

7 double c as ’fault detection rate ’ .
8 where 0 < c .
9

10 % Priors
11 const double theta as ’ prior on n error ’ .
12 where 0 < theta .
13

14 n e r r o r ∼ poisson (theta) .
15

16 const double mu as ’ prior on c (scale parameter) ’ .
17 const double alpha as ’ prior on c (shape parameter) ’ .
18 where 0 < mu.
19 where 0 < alpha .
20

21 c ∼ gamma(mu, alpha) .
22

23 % Observation and distribution
24 const nat n as ’number of observations ’ .
25 where 0 < n .
26

27 const nat l o c as ’ lines of code ’ .
28 where n < l o c .
29

30 data double x (0 . . n−1) as ’ interfailure times (elapsed time between
errors) ’ .

31 where 0 < x (I) .
32

33 x (I) ∼ exponential (c ∗ (n e r r o r − I)) .
34

8.4 Reliability Models 117

35 max pr ({x , n e r ro r , c }) for { n er ro r , c } .

Listing 8.23: Jelinski-Moranda model with conjugate priors

1 model go as ’Goel−Okumoto model ’ .
2

3 double n e r r o r as ’ in it ial number of errors ’ .
4 where n =< n e r r o r .
5 where n e r r o r =< l o c .
6

7 double c as ’fault detection rate ’ .
8 where 0 < c .
9

10 double p as ’error repair rate ’ .
11 where 0 =< p .
12 where p =< 1 .
13

14 % Observation and distribution
15 const nat n as ’number of observations ’ .
16 where 0 < n .
17

18 const nat l o c as ’ lines of code ’ .
19 where n < l o c .
20

21 data double x (0 . . n−1) as ’ interfailure times (elapsed time between
errors) ’ .

22 where 0 < x (I) .
23

24 x (I) ∼ exponential (c ∗ (n e r r o r − p ∗ I)) .
25

26 max pr (x | { n er ro r , c , p}) for { n er ro r , c , p } .

Listing 8.24: Goel-Okumoto model

118 Statistical Models — Examples

Name Lines of spec Lines of C++ Listing

normal 14 199 8.1
normal known variance 18 299 8.2
normal priors 22 207 8.3
biased measurements 19 162 8.4
log normal 15 155 8.5
lighthouse 23 502 8.6
biased coin 11 91 8.7
biased coins 14 132 8.8
biased coins prior 20 228 8.9
mog 27 587 8.10
mult cluster 29 676 8.11
mgp mu 39 635 8.12
mix beta gauss 38 999 8.14
mpca 46 589 8.15
walk 17 168 8.16
hinckley 25 353 8.17
climb transition 38 888 8.18
climb transition prior 49 1023 8.19
kalman 30 285 8.20
dgtc 116 735 8.21
jm 21 1040 8.22
ms 35 1109 8.23
go 26 886 8.24

Table 8.2: AutoBayes specifications and size of generated code

Appendix A. Command Line Options

A.1 AutoBayes Command Line Flags

The AutoBayes system is controlled by a (large) number of command-line options.
A list of these options can be obtained by calling

autobayes -help

The following list gives an alphabetical overview of all available command line flags1

[-O number] set optimization level to N (default=1)

[-anngen] generate annotations and VCs from C or intermediate code file (.lang.dump)
with -infer SP

[-c] parse C code (with -anngen/vcgen)

[-certify {array|defuse|init|inuse|norm|symm|wl}] generate policy-specific an-
notations for certification

[-check] check intermediate code for wellformedness

[-codegen] generate code from intermediate code file

[-compile] compile and link synthesized code

[-debug number] set debug level for code instrumentation

[-designdoc] generate design document

[-designdoc filename] generate named design document

[-dir filename] working directory for all output files

[-dot] write output for dot to <specname>.dot

[-dot filename] write output for dot to <filename>

[-dump {all}] dump intermediate code and proof obligations at all stages to files
<specname>.<stage>.dump

1This list is autogenerated by AutoBayes with autobayes -tex -help.

120 Command Line Options

[-dump {synt|iopt|inst|lang|prop|ann|lopt}] dump intermediate code at stage
to file <specname>.<stage>.dump

[-dump {synt|iopt|inst|lang|prop|ann|lopt} filename] dump intermediate code
at stage to file <filename>

[-dump {tptp}] dump final proof obligations to files <taskname>.dump

[-dump {vc|nvc|lvc|svc}] dump proof obligations at stage to file
<specname>.<stage>.dump

[-dump {vc|nvc|lvc|svc} filename] dump proof obligations at stage to file
<specname>.<stage>.dump

[-fastest] report which is the fastest synthesized program (see -maxprog)

[-geninit] DEVELOP: enable generic variable initialization

[-genopt] DEVELOP: enable generic optimize schema

[-help] display usage and list of options

[-help atom] display usage of option

[-help {pragmas}] display list of available pragmas

[-html] write synthesized code as html to file <specname>.html

[-html filename] write synthesized code as html to file <filename>

[-html {synt|iopt|inst|lang|prop|ann|lopt} filename] write intermediate code
at stage as html to file <filename>

[-html {synt|iopt|inst|lang|prop|ann|lopt|all}] write intermediate code at
stage as html to file <specname>.<stage>.html

[-html in filename] retrieve html from the html file <filename>

[-infer {array|init|norm|symm|val|frame}] infer policy-specific annotations for
certification

[-instrument] instrument code with conv-vector

[-interactive] switch into interactive mode

[-js filename] write synthesized code as JavaScript to file <filename>

[-js {synt|iopt|inst|lang|prop|ann|lopt} filename] write intermediate code
at stage as JavaScript to file <filename>

A.1 AutoBayes Command Line Flags 121

[-js {synt|iopt|inst|lang|prop|ann|lopt|all}] write intermediate code at stage
as JavaScript to file <specname>.<stage>.html

[-lib {gsl|gslran|unuran}] enable library

[-lib {gsl|gslran|unuran} filename] enable library (with include-path)

[-list {all}] list intermediate code and proof obligations at all stages to files
<specname>.<stage>.list

[-list {all} -] list intermediate code and proof obligations at all stages to stdout

[-list {synt|iopt|inst|lang|prop|ann|lopt}] list intermediate code at stage to
file <specname>.<stage>.txt

[-list {synt|iopt|inst|lang|prop|ann|lopt} filename] list intermediate code
at stage to file <filename>

[-list {vc|nvc|lvc|svc}] list proof obligations at stage to file <specname>.<stage>.txt

[-list {vc|nvc|lvc|svc} filename] list proof obligations at stage to file <filename>

[-log] write information to log file <specname>.log

[-log filename] write information to log file <filename>

[-matlab {ann}] (stage 2: ann) write intermediate code as Matlab-readable JavaScrip-
t/HTML to file <specname> <policy>.lang.html, with main file
<specname>.certification.html

[-matlab {lang}] (stage 1: lang) write synthesized code as Matlab-readable JavaScrip-
t/HTML to file <specname>.lang.html, where main file <specname>.certification.html

[-matlab {proofs}] (stage 4: proofs) Generates Stage(1-3). Executes run all prover
on VCs and return result in Matlab-readable JavaScript/HTML, where main file
is <specname> <policy>.certification.html

[-matlab {tasks}] (stage 3: tasks) write intermediate code as Matlab-readable
JavaScript/HTML, where main file <specname> <policy>.certification.html

[-maxprog number] synthesize up to N program versions (default=1)

[-monitorapproximations] synthesize code to check that approximation error bounds
are respected

[-monte carlo] synthesize monte-carlo data for Kalman filters [Autofilter only]

[-nocode] synthesize intermediate code only

122 Command Line Options

[-nooptimize] set optimization level to 0 (no optimization)

[-php filename] write synthesized code as php to file <filename>

[-php {synt|iopt|inst|lang|prop|ann|lopt} filename] write intermediate code
at stage as php to file <filename>

[-php {synt|iopt|inst|lang|prop|ann|lopt|all}] write intermediate code at stage
as php to file <specname>.<stage>.php

[-pragma atom=atom] set pragma to value

[-prover {tptp|esetheo|ivy}] use specified prover for certification [inactive]

[-quiet] reduce log/trace information

[-sample] synthesize code for data sampling

[-silent] suppress all log/trace information

[-target {c standalone|matlab|modula2|octave|spark}] target language and run-
time environment

[-tex] write synthesized code as latex to file <specname>.tex

[-tex filename] write synthesized code as latex to file <filename>

[-tex {synt|iopt|inst|lang|prop|ann|lopt} filename] write intermediate code
at stage as latex to file <filename>

[-tex {synt|iopt|inst|lang|prop|ann|lopt|all}] write intermediate code at stage
as latex to file <specname>.<stage>.tex

[-timelimit number] set overall timelimit

[-timelimit number number number] set timelimits for simplifier, solver, optimizer

[-user filename] user information [only for web autobayes]

[-vcgen] generate VCs from C or annotated intermediate code file (.ann.dump /
.prop.dump) with -infer SP or -certify SP, resp.

A.2 AutoBayes Pragmas

AutoBayes pragmas are low-level flags and commands to control specific actions
in the AutoBayes system. Their main purpose is to help the developer and and-
vanced user to guide the AutoBayes system in a specific way. A complete list of
AutoBayes pragmas can be obtained by

A.2 AutoBayes Pragmas 123

$ autobayes -help pragmas

In general, a pragma has the form

-pragma <NAME>=<VALUE>

No spaces are allowed between the name of the pragma, the equality sign “=”, and
the value.

In the following we list all AutoBayes pragmas2. For each pragma, its name and
type is given. Default values and, where applicable, a list of possible values are shown.
AutoBayes supports the following types of pragmas:

boolean are boolean flags, which can take the values true or false

integer can take arbitrary integer values

atom can take a Prolog atomic value, i.e., a name like none, or a string in single
quotes, e.g., ’this model’. If a list of possible values is given, only arguments
matching with an element of this list can be used.

callable requires the name of a predicate. This feature enables the developer to
call specific predicates in conjunction with this predicate. The arity of such a
predicate depends on it actual calling environment. No checks whatsoever are
performed.

assert display location (boolean) Display source code locations in trace mes-
sages

Default: -pragma assert display location=true

certify browser (atomic) set to open a browser (or browser tab) after execution
of code

Default: -pragma certify browser=none

Possible values :

none no browser

firefox open firefox browser

mozilla open mozilla browser

safari open safair browser

netscape open netscape browser

2 This list is autogenerated by the command autobayes -tex -help pragmas.

124 Command Line Options

certify explicit symm (boolean) use symm predicate in annotations

Default: -pragma certify explicit symm=false

certify external init (boolean) Treat external declarations as being initialized

Default: -pragma certify external init=false

certify filename policy (boolean) use safety policy in filename

Default: -pragma certify filename policy=true

certify generate proof tasks (boolean) Generate certification proof tasks: gets
set to true if -certify or -infer called

Default: -pragma certify generate proof tasks=false

certify generate safety doc (boolean) generate rendered safety document from
inference and VC information

Default: -pragma certify generate safety doc=false

certify generate true prooftask (boolean) Generate at least one proof task

Default: -pragma certify generate true prooftask=true

certify globals strict (boolean) Globals must be initialized according to decl
lists in procs and funcs

Default: -pragma certify globals strict=false

certify globals visible (boolean) Globals are visible throughout

Default: -pragma certify globals visible=true

certify hotvar (atomic) Active hotvar for annotation inference

Default: -pragma certify hotvar=$all

Possible values :

$all Infer annotations for all hotvars

Infer annotations for specified hotvar only

certify itar warning (boolean) insert ITAR warning at top of safety report

Default: -pragma certify itar warning=false

certify label stage (atomic) The stage at which line numbers are added during
annotation inference

A.2 AutoBayes Pragmas 125

Default: -pragma certify label stage=lang

Possible values :

source Assume to already exist in parsed source

lang Add before inference

ann Add after inference

certify limit defs (boolean) Limit the def patterns to be generator specific

Default: -pragma certify limit defs=true

certify list defs (boolean) List which defs have been successfully annotated

Default: -pragma certify list defs=true

certify only defs (boolean) Only annotate the defs

Default: -pragma certify only defs=false

certify ordered anns (boolean) process pre- and post-conditions in order

Default: -pragma certify ordered anns=false

certify render lterm (boolean) display lterm with rendered VCs

Default: -pragma certify render lterm=false

certify semantic labels (boolean) add semantic markup to VCs and display ex-
planations in certification browser

Default: -pragma certify semantic labels=false

certify semantic labels order (callable) sort order for display of semantic markup
in VCs

Default: -pragma certify semantic labels order=render sort labels by line

Possible values :

render sort labels by line

certify stream vcs (boolean) Output VCs as they are generated

Default: -pragma certify stream vcs=false

certify transparent anns (boolean) use transparent annotation rules in VCG

Default: -pragma certify transparent anns=false

126 Command Line Options

certify transparent inf (boolean) only annotate opaque barriers during infer-
ence

Default: -pragma certify transparent inf=false

certify use (atomic) Active use number for annotation inference

Default: -pragma certify use=$all

Possible values :

$all Infer annotations for all uses of a given hotvar

Infer annotations for a specified use of a given hotvar

certify use postconditions (boolean) use postconditions in VCG

Default: -pragma certify use postconditions=true

certify vc label (callable) Pre-simplifier for proof tasks (labeling and splitting)

Default: -pragma certify vc label=vc label

Possible values :

vc label strongest simplification (default)

vc label structure prop

vc label structure

vc identity no simplification

certify vc normalize (callable) Normalizer for proof tasks (integrated into VCG)

Default: -pragma certify vc normalize=vc normalize

Possible values :

vc normalize default normalization

vc normalize auxiliary

vc normalize flist

vc normalize subst

vc identity no normalization

certify vc simplify (callable) Simplifier for proof tasks (after conversion into FOL)

Default: -pragma certify vc simplify=vc simplify

A.2 AutoBayes Pragmas 127

Possible values :

vc simplify strongest simplification (default)

vc identity no simplification

cg comment style (atomic) select comment style for C/C++ code generator

Default: -pragma cg comment style=cpp

Possible values :

kr use traditional (KR) style comments

cpp use C++ style comments //

cluster pref (atomic) select algorithm schemas for hidden-variable (clustering) prob-
lems

Default: -pragma cluster pref=em

Possible values :

em prefer EM algorithm

no pref no preference

k means use k-means algorithm

codegen ignore inconsistent term (boolean) [DEBUG] ignore inconsistent-term
conditional expressions in codegen

Default: -pragma codegen ignore inconsistent term=false

em (atomic) preference for initialization algorithm for EM

Default: -pragma em=no pref

Possible values :

no pref no preference

center center initialization

sharp class class-based initialization (sharp)

fuzzy class class-based initialization (fuzzy)

em log likelihood convergence (boolean) converge on log-likelihood-function

Default: -pragma em log likelihood convergence=false

128 Command Line Options

em q output (boolean) Output the Q matrix of the EM algorithm

Default: -pragma em q output=false

em q update simple (boolean) force the q-update to just contain the density func-
tion

Default: -pragma em q update simple=false

ignore division by zero (boolean) DEBUG: Do not check for X=0 in X**(-1)
expressions

Default: -pragma ignore division by zero=false

ignore zero base (boolean) DEBUG: Do not check for zero-base in X**Y expres-
sions

Default: -pragma ignore zero base=false

il extended (boolean) use extended intermediate language. Set with -c

Default: -pragma il extended=false

infile cpp prefix (atomic) Prefix for intermediate input file after cpp(1) process-
ing

Default: -pragma infile cpp prefix=cpp

instrument convergence save ub (integer) default size of instrumentation vector
for convergence loops

Default: -pragma instrument convergence save ub=999

lopt (boolean) Turn on/off optimization of the lang code

Default: -pragma lopt=false

optimize cse (boolean) enable common subexpression elimination

Default: -pragma optimize cse=true

optimize expression inlining (boolean) enable inlining (instead function calls)
of goal expressions by schemas

Default: -pragma optimize expression inlining=true

optimize max unrolling depth (int) maximal depth of for-loops w/ constant bound
to be unrolled

Default: -pragma optimize max unrolling depth=3

A.2 AutoBayes Pragmas 129

optimize memoization (boolean) enable subexpression-memoization

Default: -pragma optimize memoization=true

optimize substitute constants (boolean) allow values of constants to be substi-
tuted into loop bounds

Default: -pragma optimize substitute constants=true

pp html fixed font family (atomic) Font family for fixed fonts in html-output

Default: -pragma pp html fixed font family=courier new

Possible values :

courier new default font

other fonts possible

pp html fixed font size (int) Font size for fixed fonts in html-output

Default: -pragma pp html fixed font size=14

pp html font color active (atomic) Font color for active in html-output

Default: -pragma pp html font color active=#6699FF

Possible values :

#6699FF default color

other colors possible

pp html font color annotation (atomic) Font color for annotation in html-output

Default: -pragma pp html font color annotation=purple

Possible values :

purple default color

other colors possible

pp html font color comment (atomic) Font color for comment in html-output

Default: -pragma pp html font color comment=green

Possible values :

green default color

other colors possible

130 Command Line Options

pp html font color highlight (atomic) Font color for highlight in html-output

Default: -pragma pp html font color highlight=red

Possible values :

red default color

other colors possible

pp html font color hover (atomic) Font color for hover in html-output

Default: -pragma pp html font color hover=#6699FF

Possible values :

#6699FF default color

other colors possible

pp html font color label (atomic) Font color for label in html-output

Default: -pragma pp html font color label=blue

Possible values :

blue default color

other colors possible

pp html font color label ref (atomic) Font color for label in html-output

Default: -pragma pp html font color label ref=#FF9966

Possible values :

#FF9966 default color

other colors possible

pp html font color link (atomic) Font color for link in html-output

Default: -pragma pp html font color link=#6699FF

Possible values :

#6699FF default color

other colors possible

pp html font color schema (atomic) Set font colors for html-output

Default: -pragma pp html font color schema=default

A.2 AutoBayes Pragmas 131

Possible values :

default

bw

pp html font color visited (atomic) Font color for visited in html-output

Default: -pragma pp html font color visited=#6699FF

Possible values :

#6699FF default color

other colors possible

pragmas detailed help (boolean) Print detailed information on Pragmas in -help
pragmas

Default: -pragma pragmas detailed help=true

prolog style (boolean) Capitalized names are variables

Default: -pragma prolog style=true

propagate annotations (atomic) propagate explicit annotations during certifica-
tion

Default: -pragma propagate annotations=true

Possible values :

true Propagate annotations after lang stage

false Do no propagation

infer ann pre Propagate before inference

infer ann post Propagate after inference

propagate index bounds (boolean) propagate index bounds during certification

Default: -pragma propagate index bounds=true

rwr cache max (integer) size of rewrite cache

Default: -pragma rwr cache max=2048

schema control arbitrary init values (boolean) enable initialization of goal vari-
ables w/ arbitrary start/step values

Default: -pragma schema control arbitrary init values=false

132 Command Line Options

schema control init values (atomic) initialization of goal variables

Default: -pragma schema control init values=automatic

Possible values :

automatic calculate best values

arbitrary use arbitrary values

user user provides values (additional input parameters

schema control solve partial (boolean) enable partial symbolic solutions

Default: -pragma schema control solve partial=true

schema control use generic optimize (boolean) enable intermediate code gener-
ation w/ generic optimize(...)-statements

Default: -pragma schema control use generic optimize=false

synth serialize maxvars (integer) maximal number of solved variables eliminated
by serialize

Default: -pragma synth serialize maxvars=0

system os (atomic) generate html for target os

Default: -pragma system os=linux

Possible values :

linux

windows

trace browser files (boolean) Trace I/O of certification browser files

Default: -pragma trace browser files=false

trace display solver obligations (boolean) display proof obligations from the
solver

Default: -pragma trace display solver obligations=true

trace vc files (boolean) Trace I/O of VC files

Default: -pragma trace vc files=true

Appendix B. Acknowledgements and Biographies

Acknowledgements

Program synthesis is the automated construction of correct and efficient executable
code from declarative specifications. The RSE (Robust Software Engineering) area
at NASA Ames Research Center is developing applications of this technology in the
domains of data analysis and state estimation. The RSE area is also interested in
correctness issues, specifically regarding the formal certification of synthesized code.

For more information, please refer to RSE’s web site URL: http://ti.arc.nasa.gov/

(click on the link for the “Robust Software Engineering” research area.)

The main developers of AutoBayes are (in alphabetical order) Wray Buntine (NICTA,
Australia), Bernd Fischer (University of Southampton, UK), and Johann Schumann
(USRA/RIACS). The following researchers (in alphabetical order) substantially con-
tributed to the AutoBayes system: Ewen Denney (USRA/RIACS), Thomas Press-
burger (RECOM Inc., QSS Group, Inc., NASA), Phil Oh (QSS Group, Inc.), Grigore
Rosu (USRA/RIACS), and Jon Whittle (RECOM Inc., QSS Group, Inc.), with the
help of summer students and interns Jutta Eusterbrock, Alexander Gray, Kate Mullen,
Rachel Smith, Amber Telfer, Steven Trac, and Mike Whalen. Its development was
supported by Michael Lowry (Intelligent Systems Division Chief Scientist) and Joseph
Coughlan (RSE area lead).

The authors of this manual would like to acknowledge Kanishka Bhaduri and John
Stutz of NASA Ames Research Center who reviewed this manual and provided helpful
comments.

The development of AutoBayes was supported by NASA Universities Grant 05106,
and the following NASA programs: the Intelligent Data Understanding (IDU) Pro-
gram, the Intelligent Systems (IS) Program, the Computing, Information, and Com-
munication Technology (CICT) Program, and the Exploration Technology Develop-
ment Program (ETDP).

Sue Blumenberg
Text Box

Bibliography

[BaJGS05] A. Banerjee, I. Dhilon ans J. Ghosh, and S. Sra. Clustering on the
Unit Hypersphere using von Mises-Fisher Distributions. The Journal of
Machine Learning Research, 6:1345–1382, 2005.

[BFG03] W. Buntine, B. Fischer, and A. Gray. Automatic Derivation of the
Multinomial PCA Algorithm. Technical report, 2003. Available at
http://ti.arc.nasa.gov/people/fischer/papers/ais2003-print.ps.

[BFH+99] W. Buntine, B. Fischer, K. Havelund, M. Lowry, T. Pressburger,
S. Roach, P. Robinson, and J. Van Baalen. Transformation Systems at
NASA Ames. In Marcelo Sant’Anna, editor, Proc. ICSE-21 Intl. Work-
shop Software Transformation Systems, pages 8–13, Los Angeles, CA,
May 1999.

[BFP99] W. Buntine, B. Fischer, and T. Pressburger. Towards Automated Syn-
thesis of Data Mining Programs. In Surajit Chaudhuri and David Madi-
gan, editors, Proc. 5th Intl. Conf. Knowledge Discovery and Data Min-
ing, pages 372–376, San Diego, CA, August 15–18 1999. ACM Press.

[BFS00] W. Buntine, B. Fischer, and J. Schumann, editors. NIPS*2000 Work-
shop on Software Support for Bayesian Analysis Systems, Breckenridge,
December 2000.

[BH97] R. Brown and P. Hwang. Introduction to Random Signals and Applied
Kalman Filtering. John Wiley & Sons, 3rd edition, 1997.

[Bis95] Ch. M. Bishop. Neural Networks for Pattern Recognition. Clarendon-
Press, Oxford, 1995.

[BS94] J. M. Bernardo and A. F. M. Smith. Bayesian Theory. J. Wiley & Sons,
Chichester, UK, 1994.

[EH81] B. S. Everitt and D. J. Hand. Finite Mixture Distributions. Chapman
& Hall, 1981.

[FHKS03] B. Fischer, A. Hajian, K. Knuth, and J. Schumann. Automatic Deriva-
tion of Statistical Data Analysis Algorithms: Planetary Nebulae and
Beyond. In Gary Erickson and Yuxiang Zhai, editors, Proc. 23rd Intl.

BIBLIOGRAPHY 135

Workshop on Bayesian Inference and Maximum Entropy Methods in Sci-
ence and Engineering, pages 276–291. American Institute of Physics,
2003.

[FPRS01] B. Fischer, T. Pressburger, G. Roşu, and J. Schumann. The AutoBayes
Program Synthesis System—System Description. In Steve Linton and
Roberto Sebastiani, editors, Proc. 9th Symp. Integration of Symbolic
Computation and Mechanized Reasoning, pages 118–125, Siena, Italy,
July 2001.

[FS03a] B. Fischer and J. Schumann. Applying AutoBayes to the Analysis of
Planetary Nebulae Images. In John Grundy and John Penix, editors,
Proc. 18th Intl. Conf. Automated Software Engineering, pages 337–342,
Montreal, Canada, October 6–10 2003. IEEE Comp. Soc. Press.

[FS03b] B. Fischer and J. Schumann. AutoBayes: A System for Generating Data
Analysis Programs from Statistical Models. J. Functional Programming,
13(3):483–508, May 2003.

[FSP00] B. Fischer, J. Schumann, and T. Pressburger. Generating Data Analysis
Programs from Statistical Models (position paper). In Walid Taha, edi-
tor, Proc. Intl. Workshop Semantics, Applications, and Implementation
of Program Generation, volume 1924 of Lect. Notes Comp. Sci., pages
212–229, Montreal, Canada, September 2000. Springer.

[FW99] B. Fischer and J. Whittle. An Integration of Deductive Retrieval into
Deductive Synthesis. In Robert J. Hall and Enn Tyugu, editors, Proc.
14th Intl. Conf. Automated Software Engineering, pages 52–61, Cocoa
Beach, Florida, October 1999. IEEE Comp. Soc. Press.

[GA01] M. S. Grewal and A. P. Andrews. Kalman Filtering: Theory and Practice
Using MATLAB. Wiley Interscience, 2001. 2nd edition.

[GBSMB08] K. Gundy-Burlet, J. Schumann, T. Menzies, and T. Barrett. Parametric
Analysis of Antares Re-entry Guidance Algorithms using Advanced Test
Generation and Data Analysis. In Proc. iSAIRAS 2008 (9th Interna-
tional Symposium on Artifical Intelligence, Robotics and Automation in
Space), 2008.

[GCSR95] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data
Analysis. Chapman & Hall, 1995.

[GFSB03] A. G. Gray, B. Fischer, J. Schumann, and W. Buntine. Automatic
Derivation of Statistical Algorithms: The EM Family and Beyond. In

136 BIBLIOGRAPHY

Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors, Ad-
vances in Neural Information Processing Systems 15, pages 689–696.
MIT Press, 2003.

[GMW81] P. Gill, W. Murray, and M. Wright. Practical Optimization. Academic
Press, 1981.

[GO78] A. L. Goel and K. Okumoto. An Analysis of Recurrent Software Failures
on a Real-time Control System. In ACM Annual Technical Conference,
pages 496–500, 1978.

[Gul88] S. F. Gull. Bayesian Inductive Inference and Maximum Entropy. In
G. J. Erickson and C. R. Smith, editors, Maximum entropy and Bayesian
methods in science and engineering, volume Vol. 1. Kluwer, Dordrecht,
1988.

[JM72] Z. Jelinski and P. B. Moranda. Software Reliability Research. In
W. Freiberger, editor, Statistical Computer Performance Evaluation,
pages 465–484. Academic Press, New York, 1972.

[KH02] K. H. Knuth and A. R. Hajian. Hierarchies of models: Toward Under-
standing of Planetary Nebulae. In C. Willimans, editor, Proc. Bayesian
Inference and Maximum Entropy Methods in Science and Engineering,
pages 92–103. American Institute of Physics, 2002.

[MAY79] P. S. Maybeck. Stochastic Models, Estimation, and Control. Vol. 1,
Academic Press, New York, New York, 1979.

[MK97] G. McLachlan and T. Krishnan. The EM Algorithm and Extensions.
Wiley Series in Probability and Statistics. John Wiley & Sons, New
York, 1997.

[MS83] R. J. Meinhold and N. D. Singpurwalla. Bayesian Analysis of a Com-
monly Used Model for Describing Software Failures. The Statistician,
32:168–173, 1983.

[OF96] J. J. K. O’Ruandaidh and W. J. Fitzgerald. Numerical Bayesian Methods
Applied to Signal Processing. Springer, Berlin, 1996.

[PFTV92] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.
Numerical Recipes in C. Cambridge Univ. Press, Cambridge, UK, 2nd.
edition, 1992.

[Siv96] A. S. Sivia. Data Analysis - A Bayesian Tutorial. Oxford University
Press, Oxford, UK, 1996.

BIBLIOGRAPHY 137

[SSF05] A. Srivastava, J. Schumann, and B. Fischer. An Ensemble Approach to
Building Mercer Kernels with Prior Information. In IEEE SMC Confer-
ence. IEEE, 2005.

[TOMS04] J. Whittle, J. Schumann. Automating the Implementation of Kalman
Filter Algorithms. In TOMS: ACM Transactions on Mathematical Soft-
ware, Vol. 29, issue 5, pages 434-453, December 2004.

[Vet07] K. Vetter. The Trick User’s Guide, Trick 2007.5 release, July 2007.

[WSF02] M. Whalen, J. Schumann, and B. Fischer. Autobayes/CC — Combining
Program Synthesis with Automatic Code Certification (system descrip-
tion). In Andrei Voronkov, editor, Proc. 18th Intl. Conf. Automated
Deduction, volume 2392 of Lect. Notes Artificial Intelligence, pages 290–
294, Copenhagen, Denmark, July 2002. Springer.

138 BIBLIOGRAPHY

Index

., 59
:=, 60, 61
, 60
, 61

air traffic control, 13
anngen (flag), 113
array indexing

0-based, 61
C-style, 61

artificial data, 43
assert display location (pragma), 117
assertion violation, 56
AutoBayes

internal variable, 65
AutoBayes, 2, 10–23, 25–28, 31–34,

38, 41–51, 53, 55, 56, 59–63,
65–67, 69, 72–82, 86–88, 93–96,
98–101, 103, 105, 106, 108, 109,
112, 113, 116, 117, 127, 133

batch-mode, 105
Bayesian, 69
Bayesian Networks, 2, 10, 80
begin autogenerated document, 65
bias, 76
binomial, 93
boolean flag, 95
boolean variable, 95

c (flag), 113
c standalone, 52
calibrated air speed (CAS), 102
cases, 62
census data, 18

center-based initialization, 80
certify (flag), 113
certify browser (pragma), 117
certify explicit symm (pragma), 117
certify external init (pragma), 118
certify filename policy (pragma), 118
certify generate proof tasks (pragma), 118
certify generate safety doc (pragma), 118
certify generate true prooftask (pragma),

118
certify globals strict (pragma), 118
certify globals visible (pragma), 118
certify hotvar (pragma), 118
certify itar warning (pragma), 118
certify label stage (pragma), 118
certify limit defs (pragma), 119
certify list defs (pragma), 119
certify only defs (pragma), 119
certify ordered anns (pragma), 119
certify render lterm (pragma), 119
certify semantic labels (pragma), 119
certify semantic labels order (pragma),

119
certify stream vcs (pragma), 119
certify transparent anns (pragma), 119
certify transparent inf (pragma), 119
certify use (pragma), 120
certify use postconditions (pragma), 120
certify vc label (pragma), 120
certify vc normalize (pragma), 120
certify vc simplify (pragma), 120
cg comment style (pragma), 121
check (flag), 113
class membership table, 80

140 INDEX

classification of galaxy distances, 17
cluster pref (pragma), 121
codegen (flag), 113
codegen ignore inconsistent term (pragma),

121
commands

autobayes, 49
mex, 29, 54
mkoctfile, 29, 53
semilogy, 32
who, 30
whos, 30

comments, 59
compile (flag), 113
cond, 62
confidence, 88
conjugate priors, 109
const, 60
constant, 59
convergence vector, 60
converting dot to jpeg, 52

data, 60
data variables, 62
debug (flag), 113
declarations, 59
derivation

automatically generated, 65
design document, 50
designdoc (flag), 50, 113
dir (flag), 113
discrete EM algorithm, 80
discrete latent variable problem, 80
distribution

bernoulli, 62, 94
beta, 62, 94
binomial, 62, 93, 94
Cauchy, 75
cauchy, 62, 94
dirichlet, 62

discrete, 62
exponential, 20, 62, 93, 94, 109
gamma, 62, 94
gauss, 62, 66, 94
invgamma, 62
log-normal, 75
mixture, 62
non-Gaussian, 93
Normal, 66
poisson, 62, 94
uniform, 62
vonMises, 62, 94
weibull, 62, 94

dot, 22
dot (flag), 50, 113
double, 60
downhill simplex method, 46
drift factor, 99
dump (flag), 113, 114

em (pragma), 80, 121
em log likelihood convergence (pragma),

82, 87, 121
em q output, 86
em q output (pragma), 121
em q update simple (pragma), 122
end autogenerated document, 65
error thresholds, 60
errors, 82

assertion violation, 56
error in distribution, 55
in approximation declaration, 56
in complexity declaration, 56
in constraint, 56
in declaration, 55
in equation, 55
no code generated, 56
no programs generated, 56

estimated parameters, 60
events, 99

INDEX 141

Expectation Maximization (EM), 32, 46,
53, 87

explanations, 43
exponential distribution, 20

fastest (flag), 114
file

mex-file, 28, 54
oct-file, 28

Fisher Iris flower data, 25
flag

anngen, 113
c, 113
certify, 113
check, 113
codegen, 113
compile, 113
debug, 113
designdoc, 50, 51, 79, 113
dir, 113
dot, 50, 79, 113
dump, 113, 114
fastest, 114
geninit, 114
genopt, 114
help, 50, 114
help flag, 51
html, 114
html in, 114
infer, 114
instrument, 28, 87, 114
interactive, 114
js, 114
lib, 115
list, 50, 115
log, 115
matlab, 115
maxprog, 115
monitorapproximations, 115
monte carlo, 115

nocode, 115
nooptimize, 115
O, 113
php, 115, 116
pragma, 116
prover, 116
quiet, 116
sample, 43, 52, 116
silent, 116
target, 29, 116

c standalone, 52
tex, 65, 116
timelimit, 116
user, 116
vcgen, 116

fuzzy class, 81

Gamma-ray bursts, 19
Gaussian distribution, 66
Gaussian noise, 95
geninit (flag), 114
genopt (flag), 114
goal expression, 62
goal statement, 60
Goel-Okumoto, 109
golden-section search, 47
Graph Viz, 22
ground cover, 17
gyro, 105

help (flag), 50, 114
hidden variable, 80
hidden variable problem, 80
Hover Test Vehicle, 12
html (flag), 114
html in (flag), 114
hyperspectral data, 17

ignore division by zero (pragma), 122
ignore zero base (pragma), 122
il extended (pragma), 122

142 INDEX

image segmentation, 16
index, 76
index variables, 60
index varibales, 59
infer (flag), 114
infile cpp prefix (pragma), 122
instrument (flag), 114
instrument convergence save ub (pragma),

122
int, 60
interactive (flag), 114
intermediate stages, 50

Jelinski/Moranda, 109
js (flag), 114

k-Means, 45
Kalman filter failure mode, 106
keywords, 63

as, 63
complexityof, 56
cond, 100
const, 63
data, 63
double, 60, 63
for, 63
include, 63
int, 60, 63
max pr, 63
nat, 60, 63
output, 63
pragma, 63
version, 63
where, 56, 61, 63
with, 56
withbound, 56
witherror, 56

lang, 50
lib (flag), 115
list (flag), 50, 115

log (flag), 115
log file, 50
log-it, 75
log-likelihood, 60, 87
log-normal, 75
lopt (pragma), 122

mach number, 102
machine learning, 12
MatlabTM, 2, 10, 11, 21, 22, 26–29,

38, 39, 42, 52–54, 59, 60, 66, 87
matlab (flag), 115
matrix variables, 61
maxiteration, 60, 81
maxprog (flag), 115
mean-time-between-failure, 109
Mercer Kernels, 17
mex, 29, 54
minerals, 18
mkoctfile, 29, 53
model

biased coin, 77
biased coin with prior, 78
biased measurements, 73
biased random walk, 100
CAS-mach transition detection, 103
CAS-mach transition detection with

priors, 104
Goel-Okumoto, 111
Jelinski-Moranda software reliabil-

ity model, 110
Jelinski-Moranda with conjugate pri-

ors, 111
Kalman filter with sensor failures,

108
lighthouse, 76
log-normal, 75
MCPA, 98
mixture of Betas and Gaussians, 97
mixture of Gaussians, 79

INDEX 143

mixture of Gaussians with priors,
92

multivariate clustering of Gaussians,
88

normal, 66
Normal distribution with conjugate

priors, 70
Normal with priors, 69
repeatedly tossing biased coin, 77
simple detection of a change point,

101
simple Kalman filter, 105

modes, 60
monitorapproximations (flag), 115
Monte Carlo generation, 12
monte carlo (flag), 115
multivariate clustering, 86
multivariate mixture model, 86

n-factor combinatorial parameter vari-
ations, 12

NaN, 87
nat, 60
no pref, 81
nocode (flag), 115
non-Gaussian data, 75
nooptimize (flag), 115
Normal distribution, 66
normalizing, 87
number of classes, 87
numerical instability, 87

O (flag), 113
Octave, 2, 10, 21, 22, 27–30, 42, 53,

54, 59, 66, 87
optimize, 48
optimize cse (pragma), 122
optimize expression inlining (pragma),

122
optimize max unrolling depth (pragma),

122

optimize memoization (pragma), 122
optimize substitute constants (pragma),

123
output, 60

parameters, 59
php (flag), 115, 116
Planetary nebulae, 14
pp html fixed font family (pragma), 123
pp html fixed font size (pragma), 123
pp html font color active (pragma), 123
pp html font color annotation (pragma),

123
pp html font color comment (pragma),

123
pp html font color highlight (pragma),

123
pp html font color hover (pragma), 124
pp html font color label (pragma), 124
pp html font color label ref (pragma), 124
pp html font color link (pragma), 124
pp html font color schema (pragma), 124
pp html font color visited (pragma), 125
pragma

assert display location, 117
certify browser, 117
certify explicit symm, 117
certify external init, 118
certify filename policy, 118
certify generate proof tasks, 118
certify generate safety doc, 118
certify generate true prooftask, 118
certify globals strict, 118
certify globals visible, 118
certify hotvar, 118
certify itar warning, 118
certify label stage, 118
certify limit defs, 119
certify list defs, 119
certify only defs, 119

144 INDEX

certify ordered anns, 119
certify render lterm, 119
certify semantic labels, 119
certify semantic labels order, 119
certify stream vcs, 119
certify transparent anns, 119
certify transparent inf, 119
certify use, 120
certify use postconditions, 120
certify vc label, 120
certify vc normalize, 120
certify vc simplify, 120
cg comment style, 121
cluster pref, 121
codegen ignore inconsistent term, 121
em, 80, 87, 121
em log likelihood convergence, 82, 87,

121
em q output, 86, 121
em q update simple, 122
ignore division by zero, 122
ignore zero base, 122
il extended, 122
infile cpp prefix, 122
instrument convergence save ub, 122
lopt, 122
optimize cse, 122
optimize expression inlining, 122
optimize max unrolling depth, 122
optimize memoization, 122
optimize substitute constants, 123
pp html fixed font family, 123
pp html fixed font size, 123
pp html font color active, 123
pp html font color annotation, 123
pp html font color comment, 123
pp html font color highlight, 123
pp html font color hover, 124
pp html font color label, 124
pp html font color label ref, 124

pp html font color link, 124
pp html font color schema, 124
pp html font color visited, 125
pragmas detailed help, 125
prolog style, 125
propagate annotations, 125
propagate index bounds, 125
rwr cache max, 125
schema control arbitrary init values,

94, 125
schema control init values, 125
schema control solve partial, 126
schema control use generic optimize,

48, 56, 126
synth serialize maxvars, 126
system os, 126
trace browser files, 126
trace display solver obligations, 126
trace vc files, 126

pragma (flag), 116
pragmas detailed help (pragma), 125
prior mean, 70
prior observations, 70
priors, 69, 88
probability distributions, 62
Prolog, 62
prolog style (pragma), 60, 125
propagate annotations (pragma), 125
propagate index bounds (pragma), 125
prover (flag), 116

q matrix, 80, 86
quiet (flag), 116

reliability models, 109
rwr cache max (pragma), 125

sample, 52
sample (flag), 43, 116
sampling rate, 99
scalar variables, 60, 61

INDEX 145

schema control arbitrary init values (pragma),
125

schema control init values (pragma), 125
schema control solve partial (pragma),

126
schema control use generic optimize, 48
schema control use generic optimize (pragma),

126
semilogy, 32
sensor measurements, 99
sensor reading, 100
sharp class, 81
silent (flag), 116
simplex, 46
Sloan Digital Sky Survey, 17
square transformation, 75
statements, 59
statistical variables, 59
sum, 42, 61
synt, 50
synth serialize maxvars (pragma), 126
system os (pragma), 126

TAR3, 12
target (flag), 116
tex (flag), 116
time series, 99
timelimit (flag), 116
tolerance, 60, 81
trace browser files (pragma), 126
trace display solver obligations (pragma),

126
trace vc files (pragma), 126
transition point, 13
Trick, 12

universal quantification, 59, 60
user (flag), 116

variable, 60
(empty), 60

(empty) mode, 60
const, 60
data, 60
matrix, 61
output, 60
scalar, 60, 61
vector, 61

variables, 60
vcgen (flag), 116
vector, 61
vector variables, 61

146 INDEX

	Introduction
	Key Features
	Applications of AutoBayes
	Data Analysis on Large Software Simulations
	Data Analysis for Air Traffic Control Data
	Shape Analysis of Planetary Nebulae
	Clustering for Sloan Digital Galaxy Survey
	Hyperspectral Clustering of Earth Science Data
	Clustering and Mapping of Geospatial Data
	Detection of Gamma-ray Spikes

	Installation
	Hardware Requirements
	Installation Requirements
	C Preprocessor
	Installing SWI-Prolog
	GraphViz
	Matlab™ or Octave

	Getting AutoBayes
	Source TAR File
	AutoBayes CVS Repository

	Building and Setting Up AutoBayes

	Iris Classical Example
	Constructing an AutoBayes Model for Iris Flower Set
	Invoking AutoBayes on the Iris Input Model
	Generating Code for Octave
	Generating Code for Matlab™
	Flags

	Compiling and Running the Iris Generated Program
	Compile and Run --- Octave
	Compile and Run --- Matlab™

	Providing Input to the Iris Program and Analyzing Results
	Executing Commands and Reading Outputs
	Interpretation of Results
	Matlab™ Scripts for Iris Plots

	System Functionality
	Overview
	Generating Code
	Generating Documentation
	Generating Artificial Test Data

	Generated Algorithms
	Clustering Algorithms
	k-Means Algorithm
	The EM Algorithm

	Numerical Optimization Algorithms
	Nelder-Mead Downhill Simplex Method
	Golden-Section Search Method
	Initialization

	Generic Optimization

	Using AutoBayes
	Invoking AutoBayes on an Input File
	Generated File Names

	Command-Line Flags
	Help Flag
	Design Document Flag
	Target Flag
	Artificial Data Flag

	Pragmas
	Compiling and Running the Generated Code
	Compiling and Running the Generated Program: Octave
	Compiling and Running the Generated Program: Matlab™

	AutoBayes Error and Warning Messages
	Interface (command-line) Errors
	Syntax Errors
	Code-Generation Errors

	Debugging AutoBayes Specifications
	Running AutoBayes
	Running AutoBayes-generated Code

	Specification Language
	Model Declarations and Syntax

	Statistical Models --- Examples
	Introductory Examples
	Normal Distributed Data
	Working with Priors
	Combining Measurements
	Transformations: log-normal and square-normal
	Other distributions: Cauchy
	Discrete

	Clustering Examples
	Mixture of Gaussians
	Multivariate Mixture of Gaussians
	Working with Priors
	Working with Non-Gaussian and Multiple Distributions
	Multinomial Principal Components Analysis (MPCA)

	Time Series Analysis
	Random Walk
	Change Point Detection
	Change Points in Multiple Variables
	Kalman Filters
	Kalman Filters with Failure modes

	Reliability Models

	Command Line Options
	AutoBayes Command Line Flags
	AutoBayes Pragmas

	Acknowledgements
	Index

